Patents by Inventor Ada Shuk Yan Poon

Ada Shuk Yan Poon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250134372
    Abstract: A wireless electroencephalogram (EEG) recording system is provided, comprising: one or more two-channel electrodes; an analog-to-digital converter (ADC) configured to capture EEG data detected by the one or more electrodes; a digital controller configured to encode the captured EEG data into a single-bit series, and generate a packet using the single-bit series; and a radio frequency (RF) transmitter configured to transmit the packet to an external receiver. In some examples, the wireless EEG recording system further includes a battery powering the one or more ADCs, the digital controller, and the RF transmitter. For instance, in some examples, the wireless EEG recording system further includes an adhesive patch configured to be attached to the head of a patient, wherein the one or more two-channel electrodes, a chip including the ADC, the digital controller and the RF transmitter, and the battery are each attached to the adhesive patch.
    Type: Application
    Filed: February 3, 2023
    Publication date: May 1, 2025
    Inventors: Ada Shuk Yan Poon, Cheng Chen
  • Publication number: 20250062642
    Abstract: Described is a locomotive implant for usage within a predetermined magnetic field. In one embodiment magnetohydrodynamics is used to generate thrust with a plurality of electrodes. In another embodiment, asymmetric drag forces are used to generate thrust.
    Type: Application
    Filed: March 20, 2024
    Publication date: February 20, 2025
    Inventors: Daniel Michael Pivonka, Anatoly Anatolievich Yakovlev, Ada Shuk Yan Poon, Teresa H. Meng
  • Patent number: 12040848
    Abstract: Described herein are methods of making and using and apparatus for wirelessly communicating data and providing power, particularly from a location exterior to a body and to an implantable device disposed within a body with tissue. The described embodiments provide apparatus and methods for efficiently transfer data and power between an external transceiver and an (implanted) biomedical device. The method is to modulate power carrier, which wirelessly powers the device, using an asynchronous modulation scheme, such as amplitude shift keying (ASK) modulation, with minimal modulation depth in order to not disrupt the power flow. The digital data is encoded in the pulse width, eliminating the need for synchronization to the power carrier signal and further minimizing the power consumption necessary for data transfer. Additionally, a reverse backscatter method for obtaining data from the implant is described that has flexible, low power operation.
    Type: Grant
    Filed: August 23, 2022
    Date of Patent: July 16, 2024
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Anatoly Anatolievich Yakovlev, Daniel Pivonka, Ada Shuk Yan Poon, Teresa H. Meng
  • Patent number: 11979028
    Abstract: Described is a locomotive implant for usage within a predetermined magnetic field. In one embodiment magnetohydrodynamics is used to generate thrust with a plurality of electrodes. In another embodiment, asymmetric drag forces are used to generate thrust.
    Type: Grant
    Filed: September 27, 2021
    Date of Patent: May 7, 2024
    Assignee: The Board of Trustees of The Leland Stanford Junior University
    Inventors: Daniel M. Pivonka, Anatoly Anatolievich Yakovlev, Ada Shuk Yan Poon, Teresa H. Meng
  • Publication number: 20240042222
    Abstract: Implantable devices and/or sensors can be wirelessly powered by controlling and propagating electromagnetic waves in a patient's tissue. Such implantable devices/sensors can be implanted at target locations in a patient, to stimulate areas such as the heart, brain, spinal cord, or muscle tissue, and/or to sense biological, physiological, chemical attributes of the blood, tissue, and other patient parameters. The propagating electromagnetic waves can be generated with sub-wavelength structures configured to manipulate evanescent fields outside of tissue to generate the propagating waves inside the tissue. Methods of use are also described.
    Type: Application
    Filed: August 24, 2023
    Publication date: February 8, 2024
    Inventors: Ada Shuk Yan Poon, Alexander Jueshyan Yeh, Yuji Tanabe, John Ho, Sanghoek Kim
  • Publication number: 20240032867
    Abstract: An implantable device is provided that can include any number of features. In some embodiments, the device includes a coil antenna configured to receive wireless power from a power source external to the patient. The device can include at least one sensor configured to sense a bodily parameter of the patient. The device can also include electronics configured to communicate the sensed bodily parameter of to a device located external to the patient. Methods of use are also described.
    Type: Application
    Filed: February 21, 2023
    Publication date: February 1, 2024
    Inventors: Ada Shuk Yan Poon, Bob S. Hu, Jihoon Jang, Anatoly Yakovlev, Yuji Tanabe, Alex Yeh, Stephanie Hsu, Andrew Ma
  • Patent number: 11771911
    Abstract: Implantable devices and/or sensors can be wirelessly powered by controlling and propagating electromagnetic waves in a patient's tissue. Such implantable devices/sensors can be implanted at target locations in a patient, to stimulate areas such as the heart, brain, spinal cord, or muscle tissue, and/or to sense biological, physiological, chemical attributes of the blood, tissue, and other patient parameters. The propagating electromagnetic waves can be generated with sub-wavelength structures configured to manipulate evanescent fields outside of tissue to generate the propagating waves inside the tissue. Methods of use are also described.
    Type: Grant
    Filed: January 14, 2021
    Date of Patent: October 3, 2023
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Ada Shuk Yan Poon, Alexander Jueshyan Yeh, Yuji Tanabe, John Ho, Sanghoek Kim
  • Publication number: 20230239005
    Abstract: Described herein are methods of making and using and apparatus for wirelessly communicating data and providing power, particularly from a location exterior to a body and to an implantable device disposed within a body with tissue. The described embodiments provide apparatus and methods for efficiently transfer data and power between an external transceiver and an (implanted) biomedical device. The method is to modulate power carrier, which wirelessly powers the device, using an asynchronous modulation scheme, such as amplitude shift keying (ASK) modulation, with minimal modulation depth in order to not disrupt the power flow. The digital data is encoded in the pulse width, eliminating the need for synchronization to the power carrier signal and further minimizing the power consumption necessary for data transfer. Additionally, a reverse backscatter method for obtaining data from the implant is described that has flexible, low power operation.
    Type: Application
    Filed: August 23, 2022
    Publication date: July 27, 2023
    Inventors: Anatoly Anatolievich Yakovlev, Daniel Pivonka, Ada Shuk Yan Poon, Teresa H. Meng
  • Patent number: 11451265
    Abstract: Described herein are methods of making and using and apparatus for wirelessly communicating data and providing power, particularly from a location exterior to a body and to an implantable device disposed within a body with tissue. The described embodiments provide apparatus and methods for efficiently transfer data and power between an external transceiver and an (implanted) biomedical device. The method is to modulate power carrier, which wirelessly powers the device, using an asynchronous modulation scheme, such as amplitude shift keying (ASK) modulation, with minimal modulation depth in order to not disrupt the power flow. The digital data is encoded in the pulse width, eliminating the need for synchronization to the power carrier signal and further minimizing the power consumption necessary for data transfer. Additionally, a reverse backscatter method for obtaining data from the implant is described that has flexible, low power operation.
    Type: Grant
    Filed: May 11, 2021
    Date of Patent: September 20, 2022
    Assignee: THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY
    Inventors: Anatoly Anatolievich Yakovlev, Daniel Pivonka, Ada Shuk Yan Poon, Teresa H. Meng
  • Publication number: 20220263346
    Abstract: Described is a locomotive implant for usage within a predetermined magnetic field. In one embodiment magnetohydrodynamics is used to generate thrust with a plurality of electrodes. In another embodiment, asymmetric drag forces are used to generate thrust.
    Type: Application
    Filed: September 27, 2021
    Publication date: August 18, 2022
    Inventors: Daniel M. Pivonka, Anatoly Anatolievich Yakovlev, Ada Shuk Yan Poon, Teresa H. Meng
  • Publication number: 20210399765
    Abstract: Described herein are methods of making and using and apparatus for wirelessly communicating data and providing power, particularly from a location exterior to a body and to an implantable device disposed within a body with tissue. The described embodiments provide apparatus and methods for efficiently transfer data and power between an external transceiver and an (implanted) biomedical device. The method is to modulate power carrier, which wirelessly powers the device, using an asynchronous modulation scheme, such as amplitude shift keying (ASK) modulation, with minimal modulation depth in order to not disrupt the power flow. The digital data is encoded in the pulse width, eliminating the need for synchronization to the power carrier signal and further minimizing the power consumption necessary for data transfer. Additionally, a reverse backscatter method for obtaining data from the implant is described that has flexible, low power operation.
    Type: Application
    Filed: May 11, 2021
    Publication date: December 23, 2021
    Inventors: Anatoly Anatolievich Yakovlev, Daniel Pivonka, Ada Shuk Yan Poon, Teresa H. Meng
  • Patent number: 11133709
    Abstract: Described is a locomotive implant for usage within a predetermined magnetic field. In one embodiment magnetohydrodynamics is used to generate thrust with a plurality of electrodes. In another embodiment, asymmetric drag forces are used to generate thrust.
    Type: Grant
    Filed: May 4, 2020
    Date of Patent: September 28, 2021
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Daniel M. Pivonka, Anatoly Anatolievich Yakovlev, Ada Shuk Yan Poon, Teresa H. Meng
  • Publication number: 20210283406
    Abstract: Implantable devices and/or sensors can be wirelessly powered by controlling and propagating electromagnetic waves in a patient's tissue. Such implantable devices/sensors can be implanted at target locations in a patient, to stimulate areas such as the heart, brain, spinal cord, or muscle tissue, and/or to sense biological, physiological, chemical attributes of the blood, tissue, and other patient parameters. The propagating electromagnetic waves can be generated with sub-wavelength structures configured to manipulate evanescent fields outside of tissue to generate the propagating waves inside the tissue. Methods of use are also described.
    Type: Application
    Filed: January 14, 2021
    Publication date: September 16, 2021
    Inventors: Ada Shuk Yan Poon, Alexander Jueshyan Yeh, Yuji Tanabe, John Ho, Sanghoek Kim
  • Patent number: 11018721
    Abstract: Described herein are methods of making and using and apparatus for wirelessly communicating data and providing power, particularly from a location exterior to a body and to an implantable device disposed within a body with tissue. The described embodiments provide apparatus and methods for efficiently transfer data and power between an external transceiver and an (implanted) biomedical device. The method is to modulate power carrier, which wirelessly powers the device, using an asynchronous modulation scheme, such as amplitude shift keying (ASK) modulation, with minimal modulation depth in order to not disrupt the power flow. The digital data is encoded in the pulse width, eliminating the need for synchronization to the power carrier signal and further minimizing the power consumption necessary for data transfer. Additionally, a reverse backscatter method for obtaining data from the implant is described that has flexible, low power operation.
    Type: Grant
    Filed: August 2, 2019
    Date of Patent: May 25, 2021
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Anatoly Anatolievich Yakovlev, Daniel Pivonka, Ada Shuk Yan Poon, Teresa H. Meng
  • Patent number: 11013930
    Abstract: Implantable devices and/or sensors can be wirelessly powered by controlling and propagating electromagnetic waves in a patient's tissue. Such implantable devices/sensors can be implanted at target locations in a patient, to stimulate areas such as the heart, brain, spinal cord, or muscle tissue, and/or to sense biological, physiological, chemical attributes of the blood, tissue, and other patient parameters. The propagating electromagnetic waves can be generated with sub-wavelength structures configured to manipulate evanescent fields outside of tissue to generate the propagating waves inside the tissue. Methods of use are also described.
    Type: Grant
    Filed: February 12, 2019
    Date of Patent: May 25, 2021
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Ada Shuk Yan Poon, Alexander Jueshyan Yeh, Yuji Tanabe, John Ho, Sanghoek Kim
  • Patent number: 11007371
    Abstract: Implantable devices and/or sensors can be wirelessly powered by controlling and propagating electromagnetic waves in a patient's tissue. Such implantable devices/sensors can be implanted at target locations in a patient, to stimulate areas such as the heart, brain, spinal cord, or muscle tissue, and/or to sense biological, physiological, chemical attributes of the blood, tissue, and other patient parameters. The propagating electromagnetic waves can be generated with sub-wavelength structures configured to manipulate evanescent fields outside of tissue to generate the propagating waves inside the tissue. Methods of use are also described.
    Type: Grant
    Filed: February 12, 2019
    Date of Patent: May 18, 2021
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Ada Shuk Yan Poon, Alexander Jueshyan Yeh, Yuji Tanabe, John Ho, Sanghoek Kim
  • Publication number: 20210099015
    Abstract: Described is a locomotive implant for usage within a predetermined magnetic field. In one embodiment magnetohydrodynamics is used to generate thrust with a plurality of electrodes. In another embodiment, asymmetric drag forces are used to generate thrust.
    Type: Application
    Filed: May 4, 2020
    Publication date: April 1, 2021
    Inventors: Daniel M. Pivonka, Anatoly Anatolievich Yakovlev, Ada Shuk Yan Poon, Teresa H. Meng
  • Patent number: 10940322
    Abstract: Implantable devices and/or sensors can be wirelessly powered by controlling and propagating electromagnetic waves in a patient's tissue. Such implantable devices/sensors can be implanted at target locations in a patient, to stimulate areas such as the heart, brain, spinal cord, or muscle tissue, and/or to sense biological, physiological, chemical attributes of the blood, tissue, and other patient parameters. The propagating electromagnetic waves can be generated with sub-wavelength structures configured to manipulate evanescent fields outside of tissue to generate the propagating waves inside the tissue. Methods of use are also described.
    Type: Grant
    Filed: February 12, 2019
    Date of Patent: March 9, 2021
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Ada Shuk Yan Poon, Alexander Jueshyan Yeh, Yuji Tanabe, John Ho, Sanghoek Kim
  • Patent number: 10870011
    Abstract: Implantable devices and/or sensors can be wirelessly powered by controlling and propagating electromagnetic waves in a patient's tissue. Such implantable devices/sensors can be implanted at target locations in a patient, to stimulate areas such as the heart, brain, spinal cord, or muscle tissue, and/or to sense biological, physiological, chemical attributes of the blood, tissue, and other patient parameters. The propagating electromagnetic waves can be generated with sub-wavelength structures configured to manipulate evanescent fields outside of tissue to generate the propagating waves inside the tissue. Methods of use are also described.
    Type: Grant
    Filed: February 12, 2019
    Date of Patent: December 22, 2020
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Ada Shuk Yan Poon, Alexander Jueshyan Yeh, Yuji Tanabe, John Ho, Sanghoek Kim
  • Patent number: 10857370
    Abstract: Implantable devices and/or sensors can be wirelessly powered by controlling and propagating electromagnetic waves in a patient's tissue. Such implantable devices/sensors can be implanted at target locations in a patient, to stimulate areas such as the heart, brain, spinal cord, or muscle tissue, and/or to sense biological, physiological, chemical attributes of the blood, tissue, and other patient parameters. The propagating electromagnetic waves can be generated with sub-wavelength structures configured to manipulate evanescent fields outside of tissue to generate the propagating waves inside the tissue. Methods of use are also described.
    Type: Grant
    Filed: February 12, 2019
    Date of Patent: December 8, 2020
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Ada Shuk Yan Poon, Alexander Jueshyan Yeh, Yuji Tanabe, John Ho, Sanghoek Kim