Patents by Inventor Ada Shuk Yan Poon
Ada Shuk Yan Poon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10124180Abstract: Implantable devices and/or sensors can be wirelessly powered by controlling and propagating electromagnetic waves in a patient's tissue. Such implantable devices/sensors can be implanted at target locations in a patient, to stimulate areas such as the heart, brain, spinal cord, or muscle tissue, and/or to sense biological, physiological, chemical attributes of the blood, tissue, and other patient parameters. The propagating electromagnetic waves can be generated with sub-wavelength structures configured to manipulate evanescent fields outside of tissue to generate the propagating waves inside the tissue. Methods of use are also described.Type: GrantFiled: November 17, 2017Date of Patent: November 13, 2018Assignee: The Board of Trustees of the Leland Stanford Junior UniversityInventors: Ada Shuk Yan Poon, Alexander Yeh, Yuji Tanabe, John Ho, Sanghoek Kim
-
Publication number: 20180296849Abstract: Implantable devices and/or sensors can be wirelessly powered by controlling and propagating electromagnetic waves in a patient's tissue. Such implantable devices/sensors can be implanted at target locations in a patient, to stimulate areas such as the heart, brain, spinal cord, or muscle tissue, and/or to sense biological, physiological, chemical attributes of the blood, tissue, and other patient parameters. In some embodiments, the implantable devices can include power management schemes that have one or more AC-DC conversion chains arranged and configured to rectify the induced alternating current or voltage into one or more energy domains. Methods of use are also described.Type: ApplicationFiled: June 20, 2018Publication date: October 18, 2018Inventors: Ada Shuk Yan POON, Alexander J. YEH
-
Patent number: 10079438Abstract: A radio-frequency power receiving device has RF antennas connected to multiple controllable rectifying circuits to produce corresponding DC signals which are combined in a controllable switching network to produce a combined DC output. A control unit determines an amplitude control signal that controls each rectifying circuit and also determines switch control signals that control a switching network. The switching network controllably combines the direct-current signals to combine the multiple corresponding direct-current signals in series, in parallel, or in a combination of series and parallel.Type: GrantFiled: September 21, 2016Date of Patent: September 18, 2018Assignee: NVoLogic IncInventors: Yuji Tanabe, Ada Shuk Yan Poon, Siu-Weng Simon Wong
-
Publication number: 20180229044Abstract: Implantable devices and/or sensors can be wirelessly powered by controlling and propagating electromagnetic waves in a patient's tissue. Such implantable devices/sensors can be implanted at target locations in a patient, to stimulate areas such as the heart, brain, spinal cord, or muscle tissue, and/or to sense biological, physiological, chemical attributes of the blood, tissue, and other patient parameters. The propagating electromagnetic waves can be generated with sub-wavelength structures configured to manipulate evanescent fields outside of tissue to generate the propagating waves inside the tissue. Methods of use are also described.Type: ApplicationFiled: November 17, 2017Publication date: August 16, 2018Inventors: Ada Shuk Yan Poon, Alexander Yeh, Yuji Tanabe, John Ho, Sanghoek Kim
-
Patent number: 10039924Abstract: Implantable devices and/or sensors can be wirelessly powered by controlling and propagating electromagnetic waves in a patient's tissue. Such implantable devices/sensors can be implanted at target locations in a patient, to stimulate areas such as the heart, brain, spinal cord, or muscle tissue, and/or to sense biological, physiological, chemical attributes of the blood, tissue, and other patient parameters. The propagating electromagnetic waves can be generated with sub-wavelength structures configured to manipulate evanescent fields outside of tissue to generate the propagating waves inside the tissue. Methods of use are also described.Type: GrantFiled: May 25, 2017Date of Patent: August 7, 2018Assignee: THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITYInventors: Ada Shuk Yan Poon, Alexander Yeh, Yuji Tanabe, John Ho, Sanghoek Kim
-
Patent number: 10004913Abstract: Implantable devices and/or sensors can be wirelessly powered by controlling and propagating electromagnetic waves in a patient's tissue. Such implantable devices/sensors can be implanted at target locations in a patient, to stimulate areas such as the heart, brain, spinal cord, or muscle tissue, and/or to sense biological, physiological, chemical attributes of the blood, tissue, and other patient parameters. In some embodiments, the implantable devices can include power management schemes that have one or more AC-DC conversion chains arranged and configured to rectify the induced alternating current or voltage into one or more energy domains. Methods of use are also described.Type: GrantFiled: March 3, 2015Date of Patent: June 26, 2018Assignee: THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITYInventors: Ada Shuk Yan Poon, Alexander J. Yeh
-
Patent number: 9991751Abstract: An apparatus can have a power supply circuit configured to receive, from an antenna, a first signal at a frequency exceeding a GHz, and including a rectifier circuit that is impedance matched to the antenna at the first frequency and that is configured to generate a supply voltage by rectifying the first signal at the first frequency. A signal generation circuit can be configured to use the supply voltage to generate a second signal at as higher frequency and to operate in two different power modes in response to a data signal. A transmitter circuit can be configured to use the supply voltage to create pulse at the higher frequency of the signal and in response to the data signal, and that includes an amplifier circuit configured to receive the data signal and provide an amplification of the data signal to the antenna.Type: GrantFiled: May 8, 2015Date of Patent: June 5, 2018Assignee: The Board of Trustees of the Leland Stanford Junior UniversityInventors: Mazhareddin Taghivand, Yashar Rajavi, Kamal Aggarwal, Ada Shuk Yan Poon
-
Publication number: 20180083371Abstract: A radio-frequency power receiving device has RF antennas connected to multiple controllable rectifying circuits to produce corresponding DC signals which are combined in a controllable switching network to produce a combined DC output. A control unit determines an amplitude control signal that controls each rectifying circuit and also determines switch control signals that control a switching network. The switching network controllably combines the direct-current signals to combine the multiple corresponding direct-current signals in series, in parallel, or in a combination of series and parallel.Type: ApplicationFiled: September 21, 2016Publication date: March 22, 2018Inventors: Yuji Tanabe, Ada Shuk Yan Poon, Siu-Weng Simon Wong
-
Publication number: 20180083668Abstract: Described herein are methods of making and using and apparatus for wirelessly communicating data and providing power, particularly from a location exterior to a body and to an implantable device disposed within a body with tissue. The described embodiments provide apparatus and methods for efficiently transfer data and power between an external transceiver and an (implanted) biomedical device. The method is to modulate power carrier, which wirelessly powers the device, using an asynchronous modulation scheme, such as amplitude shift keying (ASK) modulation, with minimal modulation depth in order to not disrupt the power flow. The digital data is encoded in the pulse width, eliminating the need for synchronization to the power carrier signal and further minimizing the power consumption necessary for data transfer. Additionally, a reverse backscatter method for obtaining data from the implant is described that has flexible, low power operation.Type: ApplicationFiled: September 29, 2017Publication date: March 22, 2018Inventors: Anatoly Anatolievich Yakovlev, Daniel Michael Pivonka, Ada Shuk Yan Poon, Teresa H. Meng
-
Publication number: 20180071540Abstract: Implantable devices and/or sensors can be wirelessly powered by controlling and propagating electromagnetic waves in a patient's tissue. Such implantable devices/sensors can be implanted at target locations in a patient, to stimulate areas such as the heart, brain, spinal cord, or muscle tissue, and/or to sense biological, physiological, chemical attributes of the blood, tissue, and other patient parameters. The propagating electromagnetic waves can be generated with sub-wavelength structures configured to manipulate evanescent fields outside of tissue to generate the propagating waves inside the tissue. Methods of use are also described.Type: ApplicationFiled: November 17, 2017Publication date: March 15, 2018Inventors: Ada Shuk Yan Poon, Alexander Yeh, Yuji Tanabe, John Ho, Sanghoek Kim
-
Publication number: 20170307700Abstract: In certain embodiments, a coil circuitry component may be configured to detect RF signals from excited spins of at least a region of an organism, where the coil circuitry component comprises a RF detection coil and a detuning circuit for detuning the RF detection coil. A coil signal detection component may be configured to extract at least some of the RF signals detected by the coil circuitry component and to convert the extracted RF signals from analog signal to digital signals. An excitation estimation component may be configured to estimate the excitation pulses from an excitation source and to generate a control timing signal from the estimated excitation pulses to set a state of the detuning circuit. A wireless communication component may be configured to wirelessly transmit the converted RF signals, the estimated excitation pulses, and the control timing signal to an external computer system.Type: ApplicationFiled: April 26, 2017Publication date: October 26, 2017Inventors: Bob Sueh-chien HU, Ada Shuk-Yan POON
-
Publication number: 20170300807Abstract: In certain embodiments, a neural net computer system may include a plurality of computing nodes. At least some of the computing nodes are associated with a first layer of a neural net. At least some of the computing nodes are associated with a second layer of the neural net. The computing nodes may each include (i) one or more processors, (ii) memory, and (iii) a wireless or optical communication unit. For each of the computing nodes: (i) the processors, the memory, and the wireless or optical communication unit of the computing node are on-die components of the computing node, and (ii) the processors of the computing node (a) transmit signals to other ones of the computing nodes via the wireless or optical communication unit of the computing node and (b) receive signals from other ones of the computing nodes via the wireless or optical communication unit of the computing node.Type: ApplicationFiled: April 24, 2017Publication date: October 19, 2017Inventors: Bob Sueh-chien HU, Ada Shuk-Yan POON
-
Publication number: 20170259071Abstract: Implantable devices and/or sensors can be wirelessly powered by controlling and propagating electromagnetic waves in a patient's tissue. Such implantable devices/sensors can be implanted at target locations in a patient, to stimulate areas such as the heart, brain, spinal cord, or muscle tissue, and/or to sense biological, physiological, chemical attributes of the blood, tissue, and other patient parameters. The propagating electromagnetic waves can be generated with sub-wavelength structures configured to manipulate evanescent fields outside of tissue to generate the propagating waves inside the tissue. Methods of use are also described.Type: ApplicationFiled: May 25, 2017Publication date: September 14, 2017Inventors: Ada Shuk Yan Poon, Alexander Yeh, Yuji Tanabe, John Ho, Sanghoek Kim
-
Publication number: 20170250577Abstract: A planar immersion lens can include any number of features. A planar immersion lens can be configured to control a phase profile of an incident wave by modulating the incident wave with sub-wavelength structures of varying impedances. The planar immersion lens can also be directly excited, with electronics or other subwavelength sources coupled to the planar immersion lens, to generate a wave with the desired phase profile. The planar immersion lens can include a plurality of metallic elements and passive elements disposed over a substrate. The passive elements can be selected, based on both the intrinsic and mutual impedances of the elements, to shape the spatial phase profile of the incident wave within this phase range. The phase gradient can be introduced along the incident material/refractive material interface to focus the incident wave into the refractive material having wave components at or beyond the critical angle. Methods are also provided.Type: ApplicationFiled: September 28, 2015Publication date: August 31, 2017Inventors: John S. Y. HO, Ada Shuk Yan POON
-
Patent number: 9744369Abstract: Implantable devices and/or sensors can be wirelessly powered by controlling and propagating electromagnetic waves in a patient's tissue. Such implantable devices/sensors can be implanted at target locations in a patient, to stimulate areas such as the heart, brain, spinal cord, or muscle tissue, and/or to sense biological, physiological, chemical attributes of the blood, tissue, and other patient parameters. The propagating electromagnetic waves can be generated with sub-wavelength structures configured to manipulate evanescent fields outside of tissue to generate the propagating waves inside the tissue. Methods of use are also described.Type: GrantFiled: June 29, 2016Date of Patent: August 29, 2017Assignee: The Board of Trustees of the Leland Stanford Junior UniversityInventors: Ada Shuk Yan Poon, Alexander Jueshyan Yeh, Yuji Tanabe, John Ho, Sanghoek Kim
-
Publication number: 20170237469Abstract: An apparatus can have a power supply circuit configured to receive, from an antenna, a first signal at a frequency exceeding a GHz, and including a rectifier circuit that is impedance matched to the antenna at the first frequency and that is configured to generate a supply voltage by rectifying the first signal at the first frequency. A signal generation circuit can be configured to use the supply voltage to generate a second signal at as higher frequency and to operate in two different power modes in response to a data signal. A transmitter circuit can be configured to use the supply voltage to create pulse at the higher frequency of the signal and in response to the data signal, and that includes an amplifier circuit configured to receive the data signal and provide an amplification of the data signal to the antenna.Type: ApplicationFiled: May 8, 2015Publication date: August 17, 2017Inventors: Mazhareddin Taghivand, Yashar Rajavi, Kamal Aggarwal, Ada Shuk Yan Poon
-
Patent number: 9687664Abstract: Implantable devices and/or sensors can be wirelessly powered by controlling and propagating electromagnetic waves in a patient's tissue. Such implantable devices/sensors can be implanted at target locations in a patient, to stimulate areas such as the heart, brain, spinal cord, or muscle tissue, and/or to sense biological, physiological, chemical attributes of the blood, tissue, and other patient parameters. The propagating electromagnetic waves can be generated with sub-wavelength structures configured to manipulate evanescent fields outside of tissue to generate the propagating waves inside the tissue. Methods of use are also described.Type: GrantFiled: September 16, 2014Date of Patent: June 27, 2017Assignee: The Board of Trustees of the Leland Stanford Junior UniversityInventors: Ada Shuk Yan Poon, Alexander Jueshyan Yeh, Yuji Tanabe, John Ho, Sanghoek Kim
-
Patent number: 9662507Abstract: Implantable devices and/or sensors can be wirelessly powered by controlling and propagating electromagnetic waves in a patient's tissue. Such implantable devices/sensors can be implanted at target locations in a patient, to stimulate areas such as the heart, brain, spinal cord, or muscle tissue, and/or to sense biological, physiological, chemical attributes of the blood, tissue, and other patient parameters. The propagating electromagnetic waves can be generated with sub-wavelength structures configured to manipulate evanescent fields outside of tissue to generate the propagating waves inside the tissue. Methods of use are also described.Type: GrantFiled: June 29, 2016Date of Patent: May 30, 2017Assignee: The Board of Trustees of the Leland Stanford Junior UniversityInventors: Ada Shuk Yan Poon, Alexander Jueshyan Yeh, Yuji Tanabe, John Ho, Sanghoek Kim
-
Patent number: 9630015Abstract: Implantable devices and/or sensors can be wirelessly powered by controlling and propagating electromagnetic waves in a patient's tissue. Such implantable devices/sensors can be implanted at target locations in a patient, to stimulate areas such as the heart, brain, spinal cord, or muscle tissue, and/or to sense biological, physiological, chemical attributes of the blood, tissue, and other patient parameters. The propagating electromagnetic waves can be generated with sub-wavelength structures configured to manipulate evanescent fields outside of tissue to generate the propagating waves inside the tissue. Methods of use are also described.Type: GrantFiled: June 29, 2016Date of Patent: April 25, 2017Assignee: The Board of Trustees of the Leland Stanford Junior UniversityInventors: Ada Shuk Yan Poon, Alexander Jueshyan Yeh, Yuji Tanabe, John Ho, Sanghoek Kim
-
Patent number: 9610457Abstract: Implantable devices and/or sensors can be wirelessly powered by controlling and propagating electromagnetic waves in a patient's tissue. Such implantable devices/sensors can be implanted at target locations in a patient, to stimulate areas such as the heart, brain, spinal cord, or muscle tissue, and/or to sense biological, physiological, chemical attributes of the blood, tissue, and other patient parameters. The propagating electromagnetic waves can be generated with sub-wavelength structures configured to manipulate evanescent fields outside of tissue to generate the propagating waves inside the tissue. Methods of use are also described.Type: GrantFiled: June 29, 2016Date of Patent: April 4, 2017Assignee: The Board of Trustees of the Leland Stanford Junior UniversityInventors: Ada Shuk Yan Poon, Alexander Jueshyan Yeh, Yuji Tanabe, John Ho, Sanghoek Kim