Patents by Inventor Adam F. Gross

Adam F. Gross has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110111954
    Abstract: A hydrogen storage material has been developed that comprises a metal hydride material embedded into a carbon microstructure that generally exhibits a greater bulk thermal conductivity than the surrounding bulk metal hydride material.
    Type: Application
    Filed: November 10, 2009
    Publication date: May 12, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Wen Li, Adam F. Gross, Alan J. Jacobsen, John J. Vajo
  • Patent number: 7938989
    Abstract: A composite structure for storing thermal energy. In one embodiment, an apparatus for storing thermal energy includes: a thermal storage material and a three-dimensional structure. The three-dimensional structure includes: a plurality of first truss elements defined by a plurality of first self-propagating polymer waveguides and extending along a first direction; a plurality of second truss elements defined by a plurality of second self-propagating polymer waveguides and extending along a second direction; and a plurality of third truss elements defined by a plurality of third self-propagating polymer waveguides and extending along a third direction. The first, second, and third truss elements interpenetrate each other at a plurality of nodes to form a continuous material. The first, second, and third truss elements define an open space. The thermal storage material occupies at least a portion of the open space, and the three-dimensional structure is self-supporting.
    Type: Grant
    Filed: October 20, 2009
    Date of Patent: May 10, 2011
    Assignee: HRL Laboratories, LLC
    Inventors: Adam F. Gross, Ronald M. Finnila, Alan J. Jacobsen, Robert Cumberland, Sky L. Skeith
  • Patent number: 7931858
    Abstract: A method of decontaminating a surface is provided. A surface to propagate electromagnetic surface waves is provided having a frequency in the microwave spectrum between 1 GHz and 1000 GHz. The surface includes a surface-wave medium or the surface-wave medium is laminated on the surface for confining the electromagnetic surface waves to the surface. The surface-wave medium includes a conductive ground plane. A dielectric is provided on the ground plane. A metallic pattern is provided on the dielectric for increasing an inductive reactance of the surface-wave medium. Electromagnetic surface waves are transmitted onto the surface from a surface-wave coupler coupled to the surface for destroying, removing, or neutralizing chemical or biological surface contaminants. The surface contaminants are destroyed, removed, or neutralized with a plasma created by the electromagnetic surface waves or through absorption of the electromagnetic surface waves.
    Type: Grant
    Filed: June 23, 2008
    Date of Patent: April 26, 2011
    Assignee: HRL Laboratories, LLC
    Inventors: Adam F. Gross, Kevin W. Kirby, Daniel J. Gregoire
  • Patent number: 7910199
    Abstract: A porous carbon scaffold with a surface and pores, the porous carbon scaffold containing a primary metal and a secondary metal, where the primary metal is a metal that does not wet the surface of the pores of the carbon scaffold but wets the surface of the secondary metal, and the secondary metal is interspersed between the surface of the pores of the carbon scaffold and the primary metal.
    Type: Grant
    Filed: July 7, 2008
    Date of Patent: March 22, 2011
    Assignee: HRL Laboratories, LLC
    Inventors: Adam F. Gross, John J. Vajo, Robert W. Cumberland, Ping Liu, Tina T. Salguero
  • Publication number: 20110039035
    Abstract: Tunable variable emissivity materials, methods for fabricating tunable variable emissivity materials, and methods for controlling the temperature of a spacecraft using tunable variable emissivity materials have been provided. In an exemplary embodiment, a variable emissivity material has the formula M1(1?(x+y))M2xM3yMnO3, wherein M1 comprises lanthanum, praseodymium, scandium, yttrium, neodymium or samarium, M2 comprises an alkali earth metal, M3 comprises an alkali earth metal that is not M2, and x, y, and (x+y) are less than 1. The material has a critical temperature (Tc) in the range of about 270 to about 320K and a transition width is less than about 30K.
    Type: Application
    Filed: February 15, 2010
    Publication date: February 17, 2011
    Inventors: Robert Cumberland, William B. Barvose-Carter, Adam F. Gross
  • Patent number: 7718227
    Abstract: Flexible thermal control coatings for use on components of spacecraft and methods for fabricating such coatings are provided. In an exemplary embodiment, a flexible thermal control coating comprises a flexible organic binder for disposition on the component and an inorganic material having a radiation absorptance (?) of less than about 0.2 and an emissivity (?) of at least about 0.6. The inorganic material and the organic binder are oriented relative to each other so that an exterior surface of the coating has a higher concentration of inorganic material than an interior surface of the coating and a lower concentration of organic binder than the interior surface.
    Type: Grant
    Filed: August 16, 2006
    Date of Patent: May 18, 2010
    Assignee: The Boeing Company
    Inventors: Robert Cumberland, William B. Barvosa-Carter, Adam F. Gross
  • Patent number: 7691284
    Abstract: Tunable variable emissivity materials, methods for fabricating tunable variable emissivity materials, and methods for controlling the temperature of a spacecraft using tunable variable emissivity materials have been provided. In an exemplary embodiment, a variable emissivity material has the formula M1(1?(x+y))M2xM3yMnO3, wherein M1 comprises lanthanum, praseodymium, scandium, yttrium, neodymium or samarium, M2 comprises an alkali earth metal, M3 comprises an alkali earth metal that is not M2, and x, y, and (x+y) are less than 1. The material has a critical temperature (Tc) in the range of about 270 to about 320K and a transition width is less than about 30K.
    Type: Grant
    Filed: August 29, 2006
    Date of Patent: April 6, 2010
    Assignee: The Boeing Company
    Inventors: Robert Cumberland, William B. Barvose Carter, Adam F. Gross
  • Patent number: 7687132
    Abstract: An ordered ceramic microstructure and a method of making the same. In one embodiment, the ceramic microstructure includes a base structure and one or more ceramic layers. The base structure includes a plurality of first truss elements defined by a plurality of first self-propagating polymer waveguides and extending along a first direction, a plurality of second truss elements defined by a plurality of second self-propagating polymer waveguides and extending along a second direction, and a plurality of third truss elements defined by a plurality of third self-propagating polymer waveguides and extending along a third direction. Here, the first, second, and third truss elements interpenetrate each other at a plurality of nodes to form a continuous material, and the base structure is self-supporting. In addition, the ceramic layers coat a surface of at least one truss element of the first truss elements, the second truss elements, or the third truss elements.
    Type: Grant
    Filed: March 5, 2008
    Date of Patent: March 30, 2010
    Assignee: HRL Laboratories, LLC
    Inventors: Adam F. Gross, Alan J. Jacobsen, Robert Cumberland
  • Patent number: 7653276
    Abstract: A composite structure for storing thermal energy. In one embodiment, an apparatus for storing thermal energy includes: a thermal storage material and a three-dimensional structure. The three-dimensional structure includes: a plurality of first truss elements defined by a plurality of first self-propagating polymer waveguides and extending along a first direction; a plurality of second truss elements defined by a plurality of second self-propagating polymer waveguides and extending along a second direction; and a plurality of third truss elements defined by a plurality of third self-propagating polymer waveguides and extending along a third direction. The first, second, and third truss elements interpenetrate each other at a plurality of nodes to form a continuous material. The first, second, and third truss elements define an open space. The thermal storage material occupies at least a portion of the open space, and the three-dimensional structure is self-supporting.
    Type: Grant
    Filed: March 6, 2008
    Date of Patent: January 26, 2010
    Assignee: HRL Laboratories, LLC
    Inventors: Adam F. Gross, Ronald M. Finnila, Alan J. Jacobsen, Robert Cumberland, Sky L. Skeith
  • Publication number: 20090298967
    Abstract: The disclosure provides for a self decontaminating coating and method. The coating comprises a polyurethane component having a solids content in the range of about 10 weight percent to about 100 weight percent and having at least one volume percent free space, a chemical active, and a biological active. In another disclosed embodiment, a method of reducing the transportation of chemical contaminants and biological contaminants is provided comprising the steps of providing a self decontaminating coating comprising a polyurethane component having a polyurethane component having a solids content in the range of about 10 weight percent to about 100 weight percent and having at least one volume percent free space, a chemical active, and a biological active, and applying the coating to a surface of an aircraft, rotorcraft, vehicle, item of equipment, or architectural structure.
    Type: Application
    Filed: June 2, 2008
    Publication date: December 3, 2009
    Applicant: THE BOEING COMPANY
    Inventors: Lynn G. Taylor, Nancy W. Carlson, Adam F. Gross
  • Patent number: 7378382
    Abstract: Aqueous dispersions of silicone oils are prepared without the need for surfactants, solvents, hydrotropes or emulsifiers by employing water soluble and/or water dispersible polymers providing inventive compositions which exhibit a rheological Critical Strain value greater than zero and less than about 0.5. Disclosed according to the present invention are compositions and methods of use of the aqueous dispersions of silicone fluids for cleaning, preserving, protecting, and otherwise treating a variety of surfaces, including household surfaces, such as floors, counter tops, furniture, walls, and automotive surfaces, such as tires, rubber, vinyl, upholstery, fabric, plastic and general elastomer surfaces.
    Type: Grant
    Filed: May 5, 2004
    Date of Patent: May 27, 2008
    Assignee: The Clorox Company
    Inventors: Ashot K. Serobian, Julio C. Cardozo, Danielle J. Coutts, Daniela N. Fritter, Adam F. Gross, Mona Marie Knock, Frederick R Van Wort, III, Tarric M. El-Sayed
  • Publication number: 20080057204
    Abstract: Tunable variable emissivity materials, methods for fabricating tunable variable emissivity materials, and methods for controlling the temperature of a spacecraft using tunable variable emissivity materials have been provided. In an exemplary embodiment, a variable emissivity material has the formula M1(1?(x+y))M2xM3yMnO3, wherein M1 comprises lanthanum, praseodymium, scandium, yttrium, neodymium or samarium, M2 comprises an alkali earth metal, M3 comprises an alkali earth metal that is not M2, and x, y, and (x+y) are less than 1. The material has a critical temperature (Tc) in the range of about 270 to about 320 K and a transition width is less than about 30 K.
    Type: Application
    Filed: August 29, 2006
    Publication date: March 6, 2008
    Inventors: Robert Cumberland, William B. Barvose Carter, Adam F. Gross
  • Publication number: 20080045639
    Abstract: Flexible thermal control coatings for use on components of spacecraft and methods for fabricating such coatings are provided. In an exemplary embodiment, a flexible thermal control coating comprises a flexible organic binder for disposition on the component and an inorganic material having a radiation absorptance (?) of less than about 0.2 and an emissivity (?) of at least about 0.6. The inorganic material and the organic binder are oriented relative to each other so that an exterior surface of the coating has a higher concentration of inorganic material than an interior surface of the coating and a lower concentration of organic binder than the interior surface.
    Type: Application
    Filed: August 16, 2006
    Publication date: February 21, 2008
    Inventors: Robert Cumberland, William B. Barvosa-Carter, Adam F. Gross