Patents by Inventor Adam Heller

Adam Heller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180177752
    Abstract: The invention features a pharmaceutical suspension containing drug particles, a drug delivery device anchored in the mouth for continuously administering the pharmaceutical suspension, and methods of their use.
    Type: Application
    Filed: February 2, 2018
    Publication date: June 28, 2018
    Inventors: Adam HELLER, Ephraim HELLER, Karl Göran WESTERBERG, John SPIRIDIGLIOZZI
  • Patent number: 10004439
    Abstract: Ceria nanoparticle compositions for use as electrode materials for in vivo electrochemical analyte sensors (e.g., glucose sensors) are provided, for example to form a cathode or a reference electrode. The ceria nanoparticle compositions may be combined with a conductive material (e.g., mixed with) to form the cathode or the reference electrode, or the ceria nanoparticle compositions may be deposited over conductive material to form the cathode or the reference electrode. Electrochemical in vivo sensors for monitoring the concentration of an analyte having a reference electrode and/or a cathode that includes a ceria nanoparticle composition, and methods for monitoring an analyte concentration using the electrochemical sensors are also described. Methods of making in vivo electrochemical analyte sensors having a reference electrode and/or a cathode that includes a ceria nanoparticle composition are also provided.
    Type: Grant
    Filed: September 20, 2013
    Date of Patent: June 26, 2018
    Assignee: Abbott Diabetes Care Inc.
    Inventor: Adam Heller
  • Patent number: 10006880
    Abstract: Ceria nanoparticle compositions for use with in vitro electrochemical chemical or biochemical sensors (e.g., test strip glucose sensors), for example to form a cathode or a reference electrode, are provided. The ceria nanoparticle compositions may be combined with a conductive material (e.g., mixed with) to form the cathode or the reference electrode or the ceria nanoparticle compositions may be deposited over a layer of conductive material to form the cathode or the reference electrode. Electrochemical in vitro sensors for determining the concentration of an analyte having a reference electrode and/or a cathode including a ceria nanoparticle composition, and methods for determining an analyte concentration using the electrochemical sensors are also described. Methods of making in vitro electrochemical sensors having a reference electrode and/or a cathode including a ceria nanoparticle composition are also provided.
    Type: Grant
    Filed: September 20, 2013
    Date of Patent: June 26, 2018
    Assignee: Abbott Diabetes Care Inc.
    Inventor: Adam Heller
  • Publication number: 20180128767
    Abstract: A sensor utilizing a non-leachable or diffusible redox mediator is described. The sensor includes a sample chamber to hold a sample in electrolytic contact with a working electrode, and in at least some instances, the sensor also contains a non-leachable or a diffusible second electron transfer agent. The sensor and/or the methods used produce a sensor signal in response to the analyte that can be distinguished from a background signal caused by the mediator. The invention can be used to determine the concentration of a biomolecule, such as glucose or lactate, in a biological fluid, such as blood or serum, using techniques such as coulometry, amperometry, and potentiometry. An enzyme capable of catalyzing the electrooxidation or electroreduction of the biomolecule is typically provided as a second electron transfer agent.
    Type: Application
    Filed: January 3, 2018
    Publication date: May 10, 2018
    Applicant: Abbott Diabetes Care Inc.
    Inventors: Benajmin J. Feldman, Adam Heller, Ephraim Heller, Fei Mao, Joseph A. Vivolo, Jeffery V. Funderburk, Fredric C. Colman, Rajesh Krishnan
  • Patent number: 9931462
    Abstract: The present disclosure relates, according to some embodiments, to methods, devices, and systems for fluid delivery to a subject using pumps, for example, non-gassing, direct current (DC), electro-osmotic pumps. In some embodiments, delivery of an aqueous fluid may be achieved by contacting the aqueous liquid with an electro-osmotic pump comprising (i) a cathode (e.g., a cathode comprising porous carbon coated with a cerium oxide-comprising coating), (ii) an anode (e.g., an anode comprising porous carbon coated with a cerium oxide-comprising coating), and (iii) a ceramic membrane (e.g., a ceramic membrane formed by fusing uncoated silica spheres, phosphosilicic-acid-coated fused silica spheres, or borosilicic-acid-coated fused silica spheres, wherein the fused spheres are randomly packed between the cathode and the anode) and/or optionally applying (a) a constant potential difference or constant voltage between the anode and the cathode of from about 0.
    Type: Grant
    Filed: August 13, 2013
    Date of Patent: April 3, 2018
    Assignee: BOARD OF REGENTS OF THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Adam Heller, Rajaram K. Nagarale
  • Patent number: 9907500
    Abstract: The present invention is directed to membranes composed liquid crystals having continuous aqueous channels, such as a lyotropic liquid crystal, including a cubic phase lyotropic liquid crystal, and to electrochemical sensors equipped with such membranes. The membranes are useful in limiting the diffusion of an analyte to a working electrode in an electrochemical sensor so that the sensor does not saturate and/or remains linearly responsive over a large range of analyte concentrations. Electrochemical sensors equipped with membranes of the present invention demonstrate considerable sensitivity and stability, and a large signal-to-noise ratio, in a variety of conditions.
    Type: Grant
    Filed: October 2, 2015
    Date of Patent: March 6, 2018
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Adam Heller, Pawel Rowinski, Benjamin J. Feldman
  • Patent number: 9901561
    Abstract: The invention features a pharmaceutical suspension containing drug particles, a drug delivery device anchored in the mouth for continuously administering the pharmaceutical suspension, and methods of their use.
    Type: Grant
    Filed: March 2, 2017
    Date of Patent: February 27, 2018
    Assignee: SynAgile Corporation
    Inventors: Adam Heller, Ephraim Heller, Karl Göran Westerberg, John Spiridigliozzi
  • Patent number: 9891185
    Abstract: A sensor utilizing a non-leachable or diffusible redox mediator is described. The sensor includes a sample chamber to hold a sample in electrolytic contact with a working electrode, and in at least some instances, the sensor also contains a non-leachable or a diffusible second electron transfer agent. The sensor and/or the methods used produce a sensor signal in response to the analyte that can be distinguished from a background signal caused by the mediator. The invention can be used to determine the concentration of a biomolecule, such as glucose or lactate, in a biological fluid, such as blood or serum, using techniques such as coulometry, amperometry, and potentiometry. An enzyme capable of catalyzing the electrooxidation or electroreduction of the biomolecule is typically provided as a second electron transfer agent.
    Type: Grant
    Filed: May 16, 2016
    Date of Patent: February 13, 2018
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Benjamin J. Feldman, Adam Heller, Ephraim Heller, Fei Mao, Joseph A. Vivolo, Jeffery V. Funderburk, Fredric C. Colman, Rajesh Krishnan
  • Publication number: 20170367584
    Abstract: Provided herein are methods, devices and systems that distinguish between cancerous and healthy tissue.
    Type: Application
    Filed: February 2, 2016
    Publication date: December 28, 2017
    Inventor: Adam Heller
  • Publication number: 20170279146
    Abstract: A fuel cell has an anode and a cathode with anode enzyme disposed on the anode and cathode enzyme is disposed on the cathode. The anode is configured and arranged to electrooxidize an anode reductant in the presence of the anode enzyme. Likewise, the cathode is configured and arranged to electroreduce a cathode oxidant in the presence of the cathode enzyme. In addition, anode redox hydrogel may be disposed on the anode to transduce a current between the anode and the anode enzyme and cathode redox hydrogel may be disposed on the cathode to transduce a current between the cathode and the cathode enzyme.
    Type: Application
    Filed: November 22, 2016
    Publication date: September 28, 2017
    Inventor: Adam Heller
  • Publication number: 20170202491
    Abstract: An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte.
    Type: Application
    Filed: April 3, 2017
    Publication date: July 20, 2017
    Applicant: Abbott Diabetes Care Inc.
    Inventors: Adam Heller, Steven H. Drucker, Robert Y. Jin, Jeffery V. Funderburk
  • Publication number: 20170172961
    Abstract: The invention features a pharmaceutical suspension containing drug particles, a drug delivery device anchored in the mouth for continuously administering the pharmaceutical suspension, and methods of their use.
    Type: Application
    Filed: March 2, 2017
    Publication date: June 22, 2017
    Inventors: Adam HELLER, Ephraim HELLER, Karl Göran WESTERBERG, John SPIRIDIGLIOZZI
  • Patent number: 9680151
    Abstract: The disclosure relates to an anode or an electrolytic capacitor electrode including an active anode material containing a chalcogen-containing-germanium composition in which the germanium:chalcogen atom ratio is between 80:20 and 98:2. The disclosure also relates to an anode including an active anode material containing a lithium and germanium-containing alloy wherein the lithium:germanium atom ratio is 22:5 or less. The anode also includes a non-cycling lithium chalcogenide. The disclosure further relates to lithium ion batteries including such anodes. The disclosure additionally relates to capacitor electrodes containing similar materials and capacitors containing such electrodes.
    Type: Grant
    Filed: October 14, 2014
    Date of Patent: June 13, 2017
    Assignee: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Charles Buddie Mullins, Paul Abel, Adam Heller, Kyle C. Klavetter
  • Patent number: 9610034
    Abstract: An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte.
    Type: Grant
    Filed: November 9, 2015
    Date of Patent: April 4, 2017
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Adam Heller, Steven H. Drucker, Robert Y. Jin, Jeffery V. Funderburk
  • Patent number: 9509010
    Abstract: A fuel cell has an anode and a cathode with anode enzyme disposed on the anode and cathode enzyme is disposed on the cathode. The anode is configured and arranged to electrooxidize an anode reductant in the presence of the anode enzyme. Likewise, the cathode is configured and arranged to electroreduce a cathode oxidant in the presence of the cathode enzyme. In addition, anode redox hydrogel may be disposed on the anode to transduce a current between the anode and the anode enzyme and cathode redox hydrogel may be disposed on the cathode to transduce a current between the cathode and the cathode enzyme.
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: November 29, 2016
    Assignee: Abbott Diabetes Care Inc.
    Inventor: Adam Heller
  • Patent number: 9498159
    Abstract: An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: November 22, 2016
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Adam Heller, Steven H. Drucker, Robert Y. Jin, Jeffery V. Funderburk
  • Publication number: 20160334356
    Abstract: A sensor utilizing a non-leachable or diffusible redox mediator is described. The sensor includes a sample chamber to hold a sample in electrolytic contact with a working electrode, and in at least some instances, the sensor also contains a non-leachable or a diffusible second electron transfer agent. The sensor and/or the methods used produce a sensor signal in response to the analyte that can be distinguished from a background signal caused by the mediator. The invention can be used to determine the concentration of a biomolecule, such as glucose or lactate, in a biological fluid, such as blood or serum, using techniques such as coulometry, amperometry, and potentiometry. An enzyme capable of catalyzing the electrooxidation or electroreduction of the biomolecule is typically provided as a second electron transfer agent.
    Type: Application
    Filed: May 16, 2016
    Publication date: November 17, 2016
    Inventors: Benjamin J. Feldman, Adam Heller, Ephraim Heller, Fei Mao, Joseph A. Vivolo, Jeffery V. Funderburk, Fredric C. Colman, Rajesh Krishnan
  • Publication number: 20160296147
    Abstract: Novel transition metal complexes of iron, cobalt, ruthenium, osmium, and vanadium are described. The transition metal complexes can be used as redox mediators in enzyme based electrochemical sensors. In such instances, transition metal complexes accept electrons from, or transfer electrons to, enzymes at a high rate and also exchange electrons rapidly with the sensor. The transition metal complexes include at least one substituted or unsubstituted biimidazole ligand and may further include a second substituted or unsubstituted biimidazole ligand or a substituted or unsubstituted bipyridine or pyridylimidazole ligand. Transition metal complexes attached to polymeric backbones are also described.
    Type: Application
    Filed: April 20, 2016
    Publication date: October 13, 2016
    Inventors: Fei Mao, Adam Heller
  • Publication number: 20160278899
    Abstract: The invention features a drug delivery device held in the mouth and continuously administering either a fluid comprising drug dissolved and/or dispersed in water or in a non-toxic liquid, or a drug in solid form.
    Type: Application
    Filed: November 5, 2014
    Publication date: September 29, 2016
    Inventors: Ephraim HELLER, Adam HELLER, Bruce REHLAENDER, John SPIRIDIGLIOZZI
  • Publication number: 20160252476
    Abstract: A polymer matrix that may coated on an electrode is created by co-crosslinking (1) an adduct of a polyaniline formed by templated oxidative polymerization on a polymer acid; (2) a water-soluble crosslinker; and (3) a redox enzyme. The polymer matrix may be hydrated, and the absorbed water may make it permeable to, for example, glucose. The polyaniline may be polyaniline itself or a substituted polyaniline; the water-soluble crosslinker may be poly(ethylene glycol) diglycidyl ether, and the redox enzyme may be glucose oxidase. The polymer matrix may be produced by co-crosslinking (1) an adduct of an electrically conductive polymer and a polymer acid; (2) a water-soluble crosslinker; and (3) a redox enzyme in a single step at an about neutral pH, curing by drying. After hydration, the crosslinked polymer matrix may form a 3-dimensional glucose-permeable bioelectrocatalyst, catalyzing the electrooxidation of glucose.
    Type: Application
    Filed: March 8, 2016
    Publication date: September 1, 2016
    Inventors: Adam Heller, Benjamin J. Feldman, Nicolas Mano, Yueh-Lin Loo