Patents by Inventor Adam Heller

Adam Heller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9149218
    Abstract: The present invention is directed to membranes composed liquid crystals having continuous aqueous channels, such as a lyotropic liquid crystal, including a cubic phase lyotropic liquid crystal, and to electrochemical sensors equipped with such membranes. The membranes are useful in limiting the diffusion of an analyte to a working electrode in an electrochemical sensor so that the sensor does not saturate and/or remains linearly responsive over a large range of analyte concentrations. Electrochemical sensors equipped with membranes of the present invention demonstrate considerable sensitivity and stability, and a large signal-to-noise ratio, in a variety of conditions.
    Type: Grant
    Filed: February 28, 2014
    Date of Patent: October 6, 2015
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Adam Heller, Pawel Rowinski, Benjamin J. Feldman
  • Publication number: 20150265192
    Abstract: Embodiments of the present disclosure include detecting a concurrent occurrence of a decrease in monitored analyte level and a corresponding decrease in monitored on-skin temperature, confirming a presence of an impending hypoglycemic condition, and asserting a notification corresponding to the confirmed impending hypoglycemic condition. Devices, methods, systems and kits incorporating the same are also provided.
    Type: Application
    Filed: June 3, 2015
    Publication date: September 24, 2015
    Applicant: Abbott Diabetes Care Inc.
    Inventors: Benjamin Jay Feldman, Adam Heller, Namvar Kiaie
  • Publication number: 20150265197
    Abstract: An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte.
    Type: Application
    Filed: May 28, 2015
    Publication date: September 24, 2015
    Applicant: Abbott Diabetes Care Inc.
    Inventors: Thomas A. Peyser, Adam Heller
  • Publication number: 20150247817
    Abstract: Ceria nanoparticle compositions for use with in vitro electrochemical chemical or biochemical sensors (e.g., test strip glucose sensors), for example to form a cathode or a reference electrode, are provided. The ceria nanoparticle compositions may be combined with a conductive material (e.g., mixed with) to form the cathode or the reference electrode or the ceria nanoparticle compositions may be deposited over a layer of conductive material to form the cathode or the reference electrode. Electrochemical in vitro sensors for determining the concentration of an analyte having a reference electrode and/or a cathode including a ceria nanoparticle composition, and methods for determining an analyte concentration using the electrochemical sensors are also described. Methods of making in vitro electrochemical sensors having a reference electrode and/or a cathode including a ceria nanoparticle composition are also provided.
    Type: Application
    Filed: September 20, 2013
    Publication date: September 3, 2015
    Inventor: Adam Heller
  • Publication number: 20150230737
    Abstract: Ceria nanoparticle compositions for use as electrode materials for in vivo electrochemical analyte sensors (e.g., glucose sensors) are provided, for example to form a cathode or a reference electrode. The ceria nanoparticle compositions may be combined with a conductive material (e.g., mixed with) to form the cathode or the reference electrode, or the ceria nanoparticle compositions may be deposited over conductive material to form the cathode or the reference electrode. Electrochemical in vivo sensors for monitoring the concentration of an analyte having a reference electrode and/or a cathode that includes a ceria nanoparticle composition, and methods for monitoring an analyte concentration using the electrochemical sensors are also described. Methods of making in vivo electrochemical analyte sensors having a reference electrode and/or a cathode that includes a ceria nanoparticle composition are also provided.
    Type: Application
    Filed: September 20, 2013
    Publication date: August 20, 2015
    Applicant: Abbott Diabetes Care Inc.
    Inventor: Adam Heller
  • Publication number: 20150217046
    Abstract: The invention features methods, compositions, dosing regimens, and infusion pumps for subcutaneously infusing acidic solutions of L-DOPA prodrugs, such as esters and amides of L-DOPA, for the treatment of Parkinson's disease. The methods and acidic compositions of the invention can reduce the severity and rate of occurrence of transient local swelling, erythema, and persistent subcutaneous granulomas associated with subcutaneous delivery of certain agents used in the treatment of Parkinson's disease.
    Type: Application
    Filed: June 4, 2013
    Publication date: August 6, 2015
    Inventors: Adam Heller, Ephraim Heller
  • Publication number: 20150208969
    Abstract: A process for the manufacture of small sensors with reproducible surfaces, including electrochemical sensors. One process includes forming channels in the surface of a substrate and disposing a conductive material in the channels to form an electrode. The conductive material can also be formed on the substrate by other impact and non-impact methods. In a preferred embodiment, the method includes cutting the substrate to form a sensor having a connector portion and a transcutaneous portion, the two portions having edges that define one continuous straight line.
    Type: Application
    Filed: April 9, 2015
    Publication date: July 30, 2015
    Applicant: Abbott Diabetes Care Inc.
    Inventors: James L. Say, Michael Francis Tomasco, Adam Heller, Yoram Gal, Behrad Aria, Ephraim Heller, Phillip John Plante, Mark S. Vreeke
  • Patent number: 9078607
    Abstract: In aspects of the present disclosure, an auto turn on blood glucose monitoring unit including a calibration unit integrated with one or more components of an analyte monitoring system is provided. Also disclosed are methods, systems, devices and kits for providing the same.
    Type: Grant
    Filed: June 17, 2013
    Date of Patent: July 14, 2015
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Adam Heller, Benjamin Jay Feldman, Shridhara Alva Karinka, Yi Wang, John R. Galasso
  • Patent number: 9072477
    Abstract: An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte.
    Type: Grant
    Filed: June 21, 2007
    Date of Patent: July 7, 2015
    Assignee: Abbott Diabetes Care Inc.
    Inventors: James Say, Michael F. Tomasco, Adam Heller, Yoram Gal, Behrad Aria, Ephraim Heller, Phillip John Plante, Mark S. Vreeke, Fredric C. Colman
  • Patent number: 9066694
    Abstract: An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte.
    Type: Grant
    Filed: April 3, 2007
    Date of Patent: June 30, 2015
    Assignee: Abbott Diabetes Care Inc.
    Inventors: James Say, Michael F. Tomasco, Adam Heller, Yoram Gal, Behrad Aria, Ephraim Heller, Phillip John Plante, Mark S. Vreeke, Fredric C. Colman
  • Patent number: 9070934
    Abstract: A fuel cell has an anode and a cathode with anode enzyme disposed on the anode and cathode enzyme is disposed on the cathode. The anode is configured and arranged to electrooxidize an anode reductant in the presence of the anode enzyme. Likewise, the cathode is configured and arranged to electroreduce a cathode oxidant in the presence of the cathode enzyme. In addition, anode redox hydrogel may be disposed on the anode to transduce a current between the anode and the anode enzyme and cathode redox hydrogel may be disposed on the cathode to transduce a current between the cathode and the cathode enzyme.
    Type: Grant
    Filed: November 17, 2014
    Date of Patent: June 30, 2015
    Assignee: Abbott Diabetes Care Inc.
    Inventor: Adam Heller
  • Patent number: 9066697
    Abstract: An analyte monitor including a sensor, a sensor control unit, and a display unit is disclosed. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: June 30, 2015
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Thomas Peyser, Adam Heller
  • Patent number: 9066695
    Abstract: An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte.
    Type: Grant
    Filed: April 12, 2007
    Date of Patent: June 30, 2015
    Assignee: Abbott Diabetes Care Inc.
    Inventors: James Say, Michael F. Tomasco, Adam Heller, Yoram Gal, Behrad Aria, Ephraim Heller, Phillip John Plante, Mark S. Vreeke, Keith A. Friedman, Fredric C. Colman
  • Patent number: 9050041
    Abstract: Embodiments of the present disclosure include detecting a concurrent occurrence of a decrease in monitored analyte level and a corresponding decrease in monitored on-skin temperature, confirming a presence of an impending hypoglycemic condition, and asserting a notification corresponding to the confirmed impending hypoglycemic condition. Devices, methods, systems and kits incorporating the same are also provided.
    Type: Grant
    Filed: May 21, 2012
    Date of Patent: June 9, 2015
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Benjamin Jay Feldman, Adam Heller, Namvar Kiaie
  • Patent number: 9042953
    Abstract: An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte.
    Type: Grant
    Filed: March 2, 2007
    Date of Patent: May 26, 2015
    Assignee: Abbott Diabetes Care Inc.
    Inventors: James Say, Michael F. Tomasco, Adam Heller, Yoram Gal, Behrad Aria, Ephraim Heller, Phillip John Plante, Mark S. Vreeke, Fredric C. Colman
  • Patent number: 9020573
    Abstract: In aspects of the present disclosure, an auto turn on blood glucose monitoring unit including a calibration unit integrated with one or more components of an analyte monitoring system is provided. Also disclosed are methods, systems, devices and kits for providing the same.
    Type: Grant
    Filed: June 17, 2013
    Date of Patent: April 28, 2015
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Adam Heller, Benjamin Jay Feldman, Shridhara Alva Karinka, Yi Wang, John R. Galasso
  • Publication number: 20150111067
    Abstract: A fuel cell has an anode and a cathode with anode enzyme disposed on the anode and cathode enzyme is disposed on the cathode. The anode is configured and arranged to electrooxidize an anode reductant in the presence of the anode enzyme. Likewise, the cathode is configured and arranged to electroreduce a cathode oxidant in the presence of the cathode enzyme. In addition, anode redox hydrogel may be disposed on the anode to transduce a current between the anode and the anode enzyme and cathode redox hydrogel may be disposed on the cathode to transduce a current between the cathode and the cathode enzyme.
    Type: Application
    Filed: November 17, 2014
    Publication date: April 23, 2015
    Inventor: Adam Heller
  • Patent number: 9011331
    Abstract: An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte.
    Type: Grant
    Filed: December 29, 2004
    Date of Patent: April 21, 2015
    Assignee: Abbott Diabetes Care Inc.
    Inventors: James Say, Michael F. Tomasco, Adam Heller, Yoram Gal, Behrad Aria, Ephraim Heller, Phillip John Plante, Mark S. Vreeke, Keith A. Friedman, Fredric C. Colman
  • Patent number: 9011332
    Abstract: An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: April 21, 2015
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Adam Heller, Steven H. Drucker, Robert Y. Jin, Jeffery V. Funderburk
  • Patent number: 9014773
    Abstract: An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte.
    Type: Grant
    Filed: March 7, 2007
    Date of Patent: April 21, 2015
    Assignee: Abbott Diabetes Care Inc.
    Inventors: James Say, Michael F. Tomasco, Adam Heller, Yoram Gal, Behrad Aria, Ephraim Heller, Phillip John Plante, Mark S. Vreeke, Fredric C. Colman