Patents by Inventor Adam Saxler

Adam Saxler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060197109
    Abstract: A HEMT device including a GaN channel structure including a very thin (Al,In,Ga)N subchannel layer that is disposed between a first GaN channel layer and a second GaN channel layer, to effect band bending induced from the piezoelectric and spontaneous charges associated with the (Al,In,Ga)N subchannel layer. This GaN channel/(Al,In,Ga)N subchannel arrangement effectively disperses the 2DEG throughout the channel of the device, thereby rendering the device more linear in character (relative to a corresponding device lacking the subchannel (Al,In,Ga)N sub-layer), without substantial loss of electron mobility.
    Type: Application
    Filed: March 3, 2005
    Publication date: September 7, 2006
    Inventor: Adam Saxler
  • Publication number: 20060138455
    Abstract: A high power, wide-bandgap device is disclosed that exhibits reduced junction temperature and higher power density during operation and improved reliability at a rated power density. The device includes a diamond substrate for providing a heat sink with a thermal conductivity greater than silicon carbide, a single crystal silicon carbide layer on the diamond substrate for providing a supporting crystal lattice match for wide-bandgap material structures that is better than the crystal lattice match of diamond, and a Group III nitride heterostructure on the single crystal silicon carbide layer for providing device characteristics.
    Type: Application
    Filed: February 6, 2006
    Publication date: June 29, 2006
    Inventor: Adam Saxler
  • Publication number: 20060118809
    Abstract: Field effect transistors having a power density of greater than 25 W/mm when operated at a frequency of at least 4 GHz are provided. The power density may be at least 30 W/mm when operated at 4 GHz. The power density of at least 30 W/mm may be provided at a drain voltage of 120 V. Transistors with a power density of at least 30 W/mm when operated at 8 GHz are also provided. The power density of at least 30 W/mm may be provided at a drain voltage of 120 V. Field effect transistors having a power density of greater than 20 W/mm when operated at a frequency of at least 10 GHz are also provided. Field effect transistors having a power density of at least 2.5 W/mm and a two tone linearity of at least ?30 dBc of third order intermodulation distortion at a center frequency of at least 4 GHz and a power added efficiency (PAE) of at least 40% are also provided.
    Type: Application
    Filed: December 6, 2004
    Publication date: June 8, 2006
    Inventors: Primit Parikh, Yifeng Wu, Adam Saxler
  • Publication number: 20060118823
    Abstract: High electron mobility transistors (HEMT) are provided having an output power of greater than 3.0 Watts when operated at a frequency of at least 30 GHz. The HEMT has a power added efficiency (PAE) of at least about 20 percent and/or a gain of at least about 7.5 dB. The total width of the HEMT is less than about 6.0 mm.
    Type: Application
    Filed: December 6, 2004
    Publication date: June 8, 2006
    Inventors: Primit Parikh, Yifeng Wu, Adam Saxler
  • Publication number: 20060121682
    Abstract: A nitride based heterojunction transistor includes a substrate and a first Group III nitride layer, such as an AlGaN based layer, on the substrate. The first Group III-nitride based layer has an associated first strain. A second Group III-nitride based layer, such as a GaN based layer, is on the first Group III-nitride based layer. The second Group III-nitride based layer has a bandgap that is less than a bandgap of the first Group III-nitride based layer and has an associated second strain. The second strain has a magnitude that is greater than a magnitude of the first strain. A third Group III-nitride based layer, such as an AlGaN or AlN layer, is on the GaN layer. The third Group III-nitride based layer has a bandgap that is greater than the bandgap of the second Group III-nitride based layer and has an associated third strain. The third strain is of opposite strain type to the second strain. A source contact, a drain contact and a gate contact may be provided on the third Group III-nitride based layer.
    Type: Application
    Filed: January 5, 2006
    Publication date: June 8, 2006
    Inventor: Adam Saxler
  • Publication number: 20060108606
    Abstract: High electron mobility transistors are provided that include a non-uniform aluminum concentration AlGaN based cap layer having a high aluminum concentration adjacent a surface of the cap layer that is remote from the barrier layer on which the cap layer is provided. High electron mobility transistors are provided that include a cap layer having a doped region adjacent a surface of the cap layer that is remote from the barrier layer on which the cap layer is provided. Graphitic BN passivation structures for wide bandgap semiconductor devices are provided. SiC passivation structures for Group III-nitride semiconductor devices are provided. Oxygen anneals of passivation structures are also provided. Ohmic contacts without a recess are also provided.
    Type: Application
    Filed: November 23, 2004
    Publication date: May 25, 2006
    Inventors: Adam Saxler, Scott Sheppard, Richard Smith
  • Publication number: 20060017064
    Abstract: High electron mobility transistors and/or methods of fabricating high electron mobility transistors that include a first Group III-nitride layer having vertically grown regions, laterally grown regions and a coalescence region are provided. A Group III-nitride channel layer is provided on the first Group III-nitride layer and a Group III-nitride barrier layer is provided on the Group III-nitride channel layer. A drain contact, a source contact and a gate contact are provided on the barrier layer. The gate contact is disposed on a portion of the barrier layer on a laterally grown region of the first Group III-nitride layer and at least a portion of one of the source contact and/or the drain contact is disposed on a portion of the barrier layer on a vertically grown region of the first Group III-nitride layer.
    Type: Application
    Filed: July 26, 2004
    Publication date: January 26, 2006
    Inventors: Adam Saxler, Scott Sheppard, Richard Smith
  • Publication number: 20060006435
    Abstract: Contacts for a nitride based transistor and methods of fabricating such contacts provide a recess through a regrowth process. The contacts are formed in the recess. The regrowth process includes fabricating a first cap layer comprising a Group III-nitride semiconductor material. A mask is fabricated and patterned on the first cap layer. The pattern of the mask corresponds to the pattern of the recesses for the contacts. A second cap layer comprising a Group III-nitride semiconductor material is selectively fabricated (e.g. grown) on the first cap layer utilizing the patterned mask. Additional layers may also be formed on the second cap layer. The mask may be removed to provide recess(es) to the first cap layer, and contact(s) may be formed in the recess(es). Alternatively, the mask may comprise a conductive material upon which a contact may be formed, and may not require removal.
    Type: Application
    Filed: September 7, 2005
    Publication date: January 12, 2006
    Inventors: Adam Saxler, Richard Smith, Scott Sheppard
  • Publication number: 20060001056
    Abstract: The surface morphology of an LED light emitting surface is changed by applying processes, such as a reactive ion etch (RIE) process to the light emitting surface. In one embodiment, the changed surface morphology takes the form of a moth-eye surface. The surface morphology created by the RIE process may be emulated using different combinations of non-RIE processes such as grit sanding and deposition of a roughened layer of material or particles followed by dry etching.
    Type: Application
    Filed: August 23, 2005
    Publication date: January 5, 2006
    Inventor: Adam Saxler
  • Publication number: 20060001046
    Abstract: The surface morphology of an LED light emitting surface is changed by applying a reactive ion etch (RIE) process to the light emitting surface. Etched features, such as truncated pyramids, may be formed on the emitting surface, prior to the RIE process, by cutting into the surface using a saw blade or a masked etching technique. Sidewall cuts may also be made in the emitting surface prior to the RIE process. A light absorbing damaged layer of material associated with saw cutting is removed by the RIE process. The surface morphology created by the RIE process may be emulated using different, various combinations of non-RIE processes such as grit sanding and deposition of a roughened layer of material or particles followed by dry etching.
    Type: Application
    Filed: March 17, 2005
    Publication date: January 5, 2006
    Inventors: Max Batres, James Ibbetson, Ting Li, Adam Saxler
  • Publication number: 20050258450
    Abstract: Transistors and/or methods of fabricating transistors that include a source contact, drain contact and gate contact are provided. In some embodiments, a channel region is provided between the source and drain contacts and at least a portion of the channel regions includes a hybrid layer comprising semiconductor material. In particular embodiments of the present invention, the transistor is a current aperture transistor. The channel region may include pendeo-epitaxial layers or epitaxial laterally overgrown layers. Transistors and methods of fabricating current aperture transistors that include a trench that extends through the channel and barrier layers and includes semiconductor material therein are also provided.
    Type: Application
    Filed: May 20, 2004
    Publication date: November 24, 2005
    Inventor: Adam Saxler
  • Publication number: 20050258451
    Abstract: Transistor fabrication includes forming a nitride-based channel layer on a substrate, forming a barrier layer on the nitride-based channel layer, forming a contact recess in the barrier layer to expose a contact region of the nitride-based channel layer, forming a contact layer on the exposed contact region of the nitride-based channel layer, for example, using a low temperature deposition process, forming an ohmic contact on the contact layer and forming a gate contact disposed on the barrier layer adjacent the ohmic contact. A high electron mobility transistor (HEMT) and methods of fabricating a HEMT are also provided.
    Type: Application
    Filed: May 20, 2004
    Publication date: November 24, 2005
    Inventors: Adam Saxler, Richard Smith
  • Publication number: 20050173728
    Abstract: A nitride-based field effect transistor includes a substrate, a channel layer comprising InAlGaN formed on the substrate, source and drain ohmic contacts in electrical communication with the channel layer, and a gate contact formed on the channel layer. At least one energy barrier opposes movement of carriers away from the channel layer. The energy barrier may comprise an electron source layer in proximity with a hole source layer which generate an associated electric field directed away from the channel. An energy barrier according to some embodiments may provide a built-in potential barrier in excess of about 0.5 eV. Method embodiments are also disclosed.
    Type: Application
    Filed: February 5, 2004
    Publication date: August 11, 2005
    Inventor: Adam Saxler
  • Publication number: 20050164482
    Abstract: A method of forming a high-power, high-frequency device in wide bandgap semiconductor materials with reduced junction temperature, higher power density during operation and improved reliability at a rated power density is disclosed, along with resulting semiconductor structures and devices. The method includes adding a layer of diamond to a silicon carbide wafer to increase the thermal conductivity of the resulting composite wafer, thereafter reducing the thickness of the silicon carbide portion of the composite wafer while retaining sufficient thickness of silicon carbide to support epitaxial growth thereon, preparing the silicon carbide surface of the composite wafer for epitaxial growth thereon, and adding a Group III nitride heterostructure to the prepared silicon carbide face of the wafer.
    Type: Application
    Filed: January 22, 2004
    Publication date: July 28, 2005
    Applicant: CREE, INC.
    Inventor: Adam Saxler
  • Publication number: 20050145874
    Abstract: Semi-insulating Group III nitride layers and methods of fabricating semi-insulating Group III nitride layers include doping a Group III nitride layer with a shallow level p-type dopant and doping the Group III nitride layer with a deep level dopant, such as a deep level transition metal dopant. Such layers and/or method may also include doping a Group III nitride layer with a shallow level dopant having a concentration of less than about 1×1017 cm?3 and doping the Group III nitride layer with a deep level transition metal dopant. The concentration of the deep level transition metal dopant is greater than a concentration of the shallow level p-type dopant.
    Type: Application
    Filed: January 7, 2004
    Publication date: July 7, 2005
    Inventor: Adam Saxler