Patents by Inventor Adolph Miller Allen

Adolph Miller Allen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10858727
    Abstract: A deposited amorphous carbon film includes at least 95% carbon. A percentage of sp3 carbon-carbon bonds present in the amorphous carbon film exceeds 30%, and a hydrogen content of the amorphous carbon film is less than 5%. A process of depositing amorphous carbon on a workpiece includes positioning the workpiece within a process chamber and positioning a magnetron assembly adjacent to the process chamber. The magnetron assembly projects a magnetic field into the process chamber. The method further includes providing a carbon target such that the magnetic field extends through the carbon target toward the workpiece. The method further includes providing a source gas to the process chamber, and providing pulses of DC power to a plasma formed from the source gas within the process chamber. The pulses of DC power are supplied in pulses of 40 microseconds or less, that repeat at a frequency of at least 4 kHz.
    Type: Grant
    Filed: May 19, 2017
    Date of Patent: December 8, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Jingjing Liu, Zhong Qiang Hua, Adolph Miller Allen, Michael W. Stowell, Srinivas D. Nemani, Chentsau Ying, Bhargav Citla, Viachslav Babayan, Andrej Halabica
  • Publication number: 20200357616
    Abstract: Embodiments of the invention generally provide a processing chamber used to perform a physical vapor deposition (PVD) process and methods of depositing multi-compositional films. The processing chamber may include: an improved RF feed configuration to reduce any standing wave effects; an improved magnetron design to enhance RF plasma uniformity, deposited film composition and thickness uniformity; an improved substrate biasing configuration to improve process control; and an improved process kit design to improve RF field uniformity near the critical surfaces of the substrate. The method includes forming a plasma in a processing region of a chamber using an RF supply coupled to a multi-compositional target, translating a magnetron relative to the multi-compositional target, wherein the magnetron is positioned in a first position relative to a center point of the multi-compositional target while the magnetron is translating and the plasma is formed, and depositing a multi-compositional film on a substrate.
    Type: Application
    Filed: July 24, 2020
    Publication date: November 12, 2020
    Inventors: Adolph Miller ALLEN, Lara HAWRYLCHAK, Zhigang XIE, Muhammad M. RASHEED, Rongjun WANG, Xianmin TANG, Zhendong LIU, Tza-Jing GUNG, Srinivas GANDIKOTA, Mei CHANG, Michael S. COX, Donny YOUNG, Kirankumar SAVANDAIAH, Zhenbin GE
  • Patent number: 10811257
    Abstract: A method may include depositing a carbon layer on a substrate using physical vapor deposition, wherein the carbon layer exhibits compressive stress, and is characterized by a first stress value; and directing a dose of low-mass species into the carbon layer, wherein, after the directing, the carbon layer exhibits a second stress value, less compressive than the first stress value.
    Type: Grant
    Filed: June 4, 2018
    Date of Patent: October 20, 2020
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Rajesh Prasad, Tzu-Yu Liu, Kyu-Ha Shim, Tom Ho Wing Yu, Zhong Qiang Hua, Adolph Miller Allen, Viabhav Soni, Ravi Rajagopalan, Nobuyuki Sasaki
  • Patent number: 10763090
    Abstract: Embodiments of the invention generally provide a processing chamber used to perform a physical vapor deposition (PVD) process and methods of depositing multi-compositional films. The processing chamber may include: an improved RF feed configuration to reduce any standing wave effects; an improved magnetron design to enhance RF plasma uniformity, deposited film composition and thickness uniformity; an improved substrate biasing configuration to improve process control; and an improved process kit design to improve RF field uniformity near the critical surfaces of the substrate.
    Type: Grant
    Filed: August 15, 2016
    Date of Patent: September 1, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Adolph Miller Allen, Lara Hawrylchak, Zhigang Xie, Muhammad M. Rasheed, Rongjun Wang, Xianmin Tang, Zhendong Liu, Tza-Jing Gung, Srinivas Gandikota, Mei Chang, Michael S. Cox, Donny Young, Kirankumar Savandaiah, Zhenbin Ge
  • Publication number: 20200255938
    Abstract: Physical vapor deposition methods for reducing the particulates deposited on the substrate are disclosed. The pressure during sputtering can be increased to cause agglomeration of the particulates formed in the plasma. The agglomerated particulates can be moved to an outer portion of the process chamber prior to extinguishing the plasma so that the agglomerates fall harmlessly outside of the diameter of the substrate.
    Type: Application
    Filed: February 11, 2020
    Publication date: August 13, 2020
    Applicant: Applied Materials, Inc.
    Inventors: Halbert Chong, Lei Zhou, Adolph Miller Allen, Vaibhav Soni, Kishor Kalathiparambil, Vanessa Faune, Song-Moon Suh
  • Publication number: 20200112438
    Abstract: Profile_ID files, containing proprietary hardware operating details of an originating user who originates a process recipe, are encrypted before dissemination of the process recipe to an end user. Blockchain technology is used to enable the end user to validate the encrypted process recipe and control uniform validated process across multiple chambers and locations.
    Type: Application
    Filed: October 9, 2018
    Publication date: April 9, 2020
    Inventors: Adolph Miller Allen, Paul Kiely, Noufal Kappachali
  • Patent number: 10563304
    Abstract: Atomic layer deposition (ALD) processes are combined with physical vapor deposition (PVD) processes in a low pressure environment to produce a high quality barrier film. The initial barrier film is deposited on a substrate using ALD processes and then moved to a PVD chamber to treat the barrier film to increase the barrier film's density and purity, decreasing the barrier film's resistivity. A dual source of materials is sputtered onto the substrate to provide doping while a gas is simultaneously used to etch the substrate to release nitrogen. At least one source of material is positioned to provide doping at an acute angle to the surface of the substrate while supplied with DC power and RF power at a first RF power frequency. The substrate is biased using RF power at a second RF power frequency.
    Type: Grant
    Filed: April 7, 2017
    Date of Patent: February 18, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Xiangjin Xie, Adolph Miller Allen, Xianmin Tang, Goichi Yoshidome
  • Patent number: 10541169
    Abstract: Embodiments of the disclosure relate to methods and a system for adjusting the chucking voltage of an electrostatic chuck. In one embodiment, a system for plasma processing a substrate includes a plasma processing chamber, a radio-frequency (RF) matching circuit coupled to the chamber, a sensor and a controller. The chamber includes a chamber body having an inner volume, a bipolar electrostatic chuck disposed in the inner volume and a power supply configured to provide chucking voltage to a pair of electrodes embedded within the electrostatic chuck. When plasma is energized within the chamber by the application of RF power through an RF matching circuit, the sensor is configured to detect a change in an electrical characteristic at the RF matching circuit. The controller is coupled to the power supply and configured to adjust the chucking voltage in response to the change in the electrical characteristic detected by the sensor.
    Type: Grant
    Filed: May 12, 2017
    Date of Patent: January 21, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Chong Jiang, Lei Jing, Mingte Liu, Adolph Miller Allen, Michael W. Johnson, Pallavi Zhang, Michael D. Armacost
  • Publication number: 20190304783
    Abstract: A method may include depositing a carbon layer on a substrate using physical vapor deposition, wherein the carbon layer exhibits compressive stress, and is characterized by a first stress value; and directing a dose of low-mass species into the carbon layer, wherein, after the directing, the carbon layer exhibits a second stress value, less compressive than the first stress value.
    Type: Application
    Filed: June 4, 2018
    Publication date: October 3, 2019
    Applicant: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Rajesh Prasad, Tzu-Yu Liu, Kyu-HA Shim, Tom Ho Wing Yu, Zhong Qiang Hua, Adolph Miller Allen, Viabhav Soni, Ravi Rajagopalan, Nobuyuki Sasaki
  • Patent number: 10400327
    Abstract: A method of processing a substrate includes: sputtering target material for a first amount of time using a first plasma formed from an inert gas and a first amount of power; determining a first counter, based on a product of a flow rate of the inert gas, the first amount of power, and the first amount of time; sputtering a metal compound material for a second amount of time using a second plasma formed from a process gas comprising a reactive gas and an inert gas and a second amount of power; determining a second counter based on a product of a flow rate of the process gas, the second amount of power, and the second amount of time; determining a third counter; and depositing a metal compound layer onto a predetermined number of substrates, wherein a deposition time for each substrate is adjusted based on the third counter.
    Type: Grant
    Filed: January 26, 2016
    Date of Patent: September 3, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Mohammad Kamruzzaman Chowdhury, Zhenbin Ge, Adolph Miller Allen
  • Publication number: 20190267220
    Abstract: A shield encircles a sputtering target that faces a substrate support in a substrate processing chamber. The shield comprises an outer band having a diameter sized to encircle the sputtering target, the outer band having upper and bottom ends, and the upper end having a tapered surface extending radially outwardly and adjacent to the sputtering target. A base plate extends radially inward from the bottom end of the outer band. An inner band joined to the base plate at least partially surrounds a peripheral edge of a substrate support. The shield can also have a heat exchanger comprising a conduit with an inlet and outlet to flow heat exchange fluid therethrough.
    Type: Application
    Filed: May 10, 2019
    Publication date: August 29, 2019
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Kathleen Scheible, Michael Allen Flanigan, Goichi Yoshidome, Adolph Miller Allen, Cristopher Pavloff
  • Publication number: 20190259586
    Abstract: Embodiments of improved apparatus for maintaining low non-uniformity over the life of a target are provided herein. In some embodiments, an apparatus includes a substrate support within a volume of a chamber body, opposite a target assembly of a lid atop the chamber body, with a surface; a shield disposed within the chamber body comprising one or more sidewalls surrounding the volume, the shield extending downward to below a top surface of the substrate support, radially inward, and returning upward forming an extending lip; and a first ring having (i) a first portion comprising an opening having a ceramic isolator, disposed therein, resting on top of the extending lip, and (ii) a second portion extending away from the first portion toward the surface, wherein the substrate support, over a life of the target, is configured to raise and lower, relative to the first ring, a substrate disposed on the surface.
    Type: Application
    Filed: May 6, 2019
    Publication date: August 22, 2019
    Inventors: WILLIAM JOHANSON, FUHONG ZHANG, YU Y. LIU, ADOLPH MILLER ALLEN
  • Patent number: 10347475
    Abstract: A holding assembly for retaining a deposition ring about a periphery of a substrate support in a substrate processing chamber, the deposition ring comprising a peripheral recessed pocket with a holding post. The holding assembly comprises a restraint beam capable of being attached to the substrate support, the restraint beam comprising two ends, and an anti-lift bracket. The anti-lift bracket comprises a block comprising a through-channel to receive an end of a restraint beam, and a retaining hoop attached to the block, the retaining hoop sized to slide over and encircle the holding post in the peripheral recessed pocket of the deposition ring.
    Type: Grant
    Filed: September 7, 2015
    Date of Patent: July 9, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Kathleen Scheible, Michael Allen Flanigan, Goichi Yoshidome, Adolph Miller Allen, Christopher Pavloff
  • Patent number: 10283334
    Abstract: Embodiments of improved methods and apparatus for maintaining low non-uniformity over the course of the life of a target are provided herein. In some embodiments, a method of processing a substrate in a physical vapor deposition chamber includes: disposing a substrate atop a substrate support having a cover ring that surrounds the substrate support such that an upper surface of the substrate is positioned at a first distance above an upper surface of the cover ring; sputtering a source material from a target disposed opposite the substrate support to deposit a film atop the substrate while maintaining the first distance; and lowering the substrate support with respect to the cover ring and sputtering the source material from the target to deposit films atop subsequent substrates over a life of the target.
    Type: Grant
    Filed: October 23, 2014
    Date of Patent: May 7, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: William Johanson, Fuhong Zhang, Adolph Miller Allen, Yu Liu
  • Patent number: 10283345
    Abstract: Methods for processing a substrate are provided herein. In some embodiments, a method of processing a substrate includes: heating a substrate disposed within a processing volume of a substrate processing chamber to a temperature of up to about 400 degrees Celsius, wherein the substrate comprises a first surface, an opposing second surface, and an opening formed in the first surface and extending towards the opposing second surface, and wherein the second surface comprises a conductive material disposed in the second surface and aligned with the opening; and exposing the substrate to a process gas comprising about 80 to about 100 wt. % of an alcohol to reduce a contaminated surface of the conductive material.
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: May 7, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Xiangjin Xie, Feng Q. Liu, Daping Yao, Alexander Jansen, Joung Joo Lee, Adolph Miller Allen, Xianmin Tang, Mei Chang
  • Publication number: 20190127842
    Abstract: An apparatus and method of forming a dielectric film layer using a physical vapor deposition process include delivering a sputter gas to a substrate positioned in a processing region of a process chamber, the process chamber having a dielectric-containing sputter target, delivering an energy pulse to the sputter gas to create a sputtering plasma, the sputtering plasma being formed by energy pulses having an average voltage between about 800 volts and about 2000 volts and an average current between about 50 amps and about 300 amps at a frequency which is less than 50 kHz and greater than 5 kHz and directing the sputtering plasma toward the dielectric-containing sputter target to form an ionized species comprising dielectric material sputtered from the dielectric-containing sputter target, the ionized species forming a dielectric-containing film on the substrate.
    Type: Application
    Filed: October 30, 2017
    Publication date: May 2, 2019
    Inventors: Viachslav BABAYAN, Adolph Miller ALLEN, Bhargav CITLA, Ronald D. DEDORE, Vanessa FAUNE, Zhong Qiang HUA, Vaibhav SONI, Menglu WU
  • Patent number: 10266940
    Abstract: In some embodiments a method of depositing a metal-containing layer atop a substrate disposed in a physical vapor deposition (PVD) chamber includes: providing a plasma forming gas to a processing region of the PVD chamber; providing a first amount of RF power to a target assembly disposed opposite the substrate to form a plasma within the processing region of the PVD chamber; sputtering source material from the target assembly to deposit a metal-containing layer onto the substrate, wherein the source material is at a first erosion state; and tuning an auto capacitance tuner coupled to a substrate support while sputtering source material to maintain an ion energy at a surface of the substrate within a predetermined range as the target erodes from the first erosion state to a second erosion state.
    Type: Grant
    Filed: February 22, 2016
    Date of Patent: April 23, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Zhenbin Ge, Vivek Gupta, Adolph Miller Allen, Ryan Hanson
  • Patent number: 10242873
    Abstract: Methods for depositing a metal-containing layer atop a substrate disposed in a PVD chamber are provided herein. In some embodiments, such a method includes: providing a plasma forming gas to a processing region of the PVD chamber; providing a first amount of RF power to a target assembly disposed opposite the substrate to form a plasma within the processing region of the PVD chamber; sputtering source material from the target assembly to deposit a metal-containing layer onto the substrate, wherein the source material is at a first erosion state; and increasing the first amount of RF power provided to the target assembly by a predetermined amount while sputtering the source material, wherein the predetermined amount is determined by a second amount of RF power provided to the target assembly to maintain a desired ionization rate of source material at a second erosion state.
    Type: Grant
    Filed: March 6, 2015
    Date of Patent: March 26, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Adolph Miller Allen, Zhenbin Ge
  • Publication number: 20190088457
    Abstract: Embodiments presented herein relate to a method of and apparatus for processing a substrate in a semiconductor processing system. The method begins by initializing a pulse synchronization controller coupled between a pulse RF bias generator and a HIPIMs generator. A first timing signal is sent by the pulse synchronization controller to the pulse RF bias generator and the HIPIMs generator. A sputtering target and an RF electrode disposed in a substrate support is energized based on the first timing signal. The target and the electrode is de-energized based on an end of the timing signal. A second timing signal is sent by the pulse synchronization controller to the pulse RF bias generator and the electrode is energized and de-energized without energizing the target in response to the second timing signal.
    Type: Application
    Filed: July 23, 2018
    Publication date: March 21, 2019
    Inventors: Viachslav BABAYAN, Zhong Qiang HUA, Menglu WU, Adolph Miller ALLEN, Bhargav CITLA
  • Publication number: 20180330977
    Abstract: Embodiments of the disclosure relate to methods and a system for adjusting the chucking voltage of an electrostatic chuck. In one embodiment, a system for plasma processing a substrate includes a plasma processing chamber, a radio-frequency (RF) matching circuit coupled to the chamber, a sensor and a controller. The chamber includes a chamber body having an inner volume, a bipolar electrostatic chuck disposed in the inner volume and a power supply configured to provide chucking voltage to a pair of electrodes embedded within the electrostatic chuck. When plasma is energized within the chamber by the application of RF power through an RF matching circuit, the sensor is configured to detect a change in an electrical characteristic at the RF matching circuit. The controller is coupled to the power supply and configured to adjust the chucking voltage in response to the change in the electrical characteristic detected by the sensor.
    Type: Application
    Filed: May 12, 2017
    Publication date: November 15, 2018
    Inventors: Chong JIANG, Lei JING, Mingte LIU, Adolph Miller ALLEN, Michael W. JOHNSON, Pallavi ZHANG, Michael D. ARMACOST