Patents by Inventor AJ Kleinosowski

AJ Kleinosowski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090045840
    Abstract: A logic book for a programmable device such as an application-specific integrated circuit (ASIC) achieves improved radiation tolerance by providing transistors of the same doping type in different well regions that are physically isolated by intervening well regions with complementary doping. For example, n-type field effect transistors (NFETs) may be located in two outer rows of the book with separate Pwell regions, while p-type transistors are located in two inner rows of the book sharing a common Nwell region. Since the NFETs in separate wells are physically isolated from each other, a circuit structure which uses two NFETs in the two outer rows is much less likely to suffer multiple upsets from a single radiation strike. More complicated embodiments of the present invention include additional transistor rows in the stack with isolated Nwells and Pwells.
    Type: Application
    Filed: August 14, 2007
    Publication date: February 19, 2009
    Inventors: Mark R. Beckenbaugh, AJ KleinOsowski, Eric J. Lukes, Byron D. Scott
  • Publication number: 20090045841
    Abstract: A logic book for a programmable device such as an application-specific integrated circuit (ASIC) achieves improved radiation tolerance by providing notches in an implant well between adjacent transistors and fills the notches with complementary well regions that act as a barrier to charge migration. For example, a row of n-type field effect transistors (NFETs) is located in a Pwell region, while a row of p-type transistors is located in an Nwell region with portions of the Nwell region extending between the NFETs. More complicated embodiments of the present invention include embedded well islands to provide barriers for adjacent transistors in both rows of the book.
    Type: Application
    Filed: August 14, 2007
    Publication date: February 19, 2009
    Inventors: Mark R. Beckenbaugh, AJ KleinOsowski, Eric J. Lukes
  • Publication number: 20080270862
    Abstract: A scanned value is stored by loading the value into at least three latch stages, generating an output value based on a majority of the latch stage outputs, and feeding the output value back to the inputs of the latch stages to reload the latch stages with the latch circuit output value. Refreshing of the latch stages in this manner repairs any upset latch stage and restores the latch circuit to its original scanned state. The latch circuit may be repeatedly refreshed, preferably on a periodic basis, to prevent failures arising from multiple upsets. The feedback path may include a front-end multiplexer which receives the scan-in line and the output of the majority gate. Control logic selects the output value from the majority gate to pass to the latch stages during the refresh phase. The latch stages may be arranged in a master-slave configuration with a check stage at the slave level. The method is particularly suited for self-correcting scan latches of a microprocessor control system.
    Type: Application
    Filed: July 6, 2008
    Publication date: October 30, 2008
    Inventors: Alan J. Drake, AJ KleinOsowski, Andrew K. Martin
  • Patent number: 7418641
    Abstract: A latch circuit having three latch stages generates a majority output value from the stages, senses when the latch stage outputs are not all equal, and feeds the majority output value back to inputs of the latch stages to reload the latch stages. The latch circuit uses a not-equal gate whose output is an error signal that can be monitored to determine when a single-event upset has occurred. A master stage is controlled by a first multiplexer which receives one system clock signal, while a slave stage is controlled by a second multiplexer which receives another system clock signal, and the latch stage outputs are connected to respective inputs of the not-equal gate, whose output is connected to second inputs of the multiplexers. The latch circuit is part of a latch control system, and reloading of the latch stages takes less than one cycle of the system clock (less than 500 picoseconds).
    Type: Grant
    Filed: October 3, 2005
    Date of Patent: August 26, 2008
    Assignee: International Business Machines Corporation
    Inventors: Alan J. Drake, Aj KleinOsowski, Andrew K. Martin
  • Publication number: 20080016477
    Abstract: A method of modeling soft errors in a logic circuit uses two separate current sources inserted at the source and drain of a device to simulate a single event upset (SEU) caused by, e.g., an alpha-particle strike. In an nfet implementation the current flows from the source or drain toward the body of the device. Current waveforms having known amplitudes are injected at the current sources while simulating operation of the logic circuit and the state of the logic circuit is determined from the simulated operation. The amplitudes of the current waveforms can be independently adjusted. The simulator monitors the state of device and makes a log entry when a transition occurs. The process may be repeated for other devices in the logic circuit to provide an overall characterization of the susceptibility of the circuit to soft errors.
    Type: Application
    Filed: July 13, 2006
    Publication date: January 17, 2008
    Inventors: AJ Kleinosowski, Philip J. Oldiges, Paul M. Solomon, Richard Q. Williams
  • Patent number: 7202705
    Abstract: A dynamic logic circuit apparatus and method for reducing leakage power consumption via separate clock and output stage control reduces power consumption of processors and other systems incorporating dynamic circuits. The power control signal may be a delayed version of the logic clock and turns on the output inverter foot device after the dynamic node has had sufficient time to evaluate, providing a fast evaluate time and reducing leakage through the inverter input when the foot device is off. Alternatively, a coarsely timed static power control signal may be used to control the inverter foot devices. The drains of the inverter foot devices can be commonly connected across multiple circuits, reducing the foot device total area.
    Type: Grant
    Filed: November 18, 2004
    Date of Patent: April 10, 2007
    Assignee: International Business Machines Corporation
    Inventors: Hung Cai Ngo, Jente Benedict Kuang, Harmander Singh Deogun, AJ Kleinosowski
  • Patent number: 7193446
    Abstract: A dynamic logic circuit incorporating reduced leakage state-retaining devices reduces power consumption of processors and other systems incorporating dynamic circuits. A keeper circuit provides a low leakage retention of the state of the output stage of the dynamic circuit so that an output circuit foot device can be disabled except when required for a transition in the output of the dynamic circuit. The keeper circuit includes a transistor having a smaller area than a corresponding transistor in the output circuit, thus reducing leakage through the gate of the output circuit when the keeper circuit is holding the output and the output circuit foot device is disabled. A self-clocked control of the output circuit foot device can be provided via a delayed version of the dynamic logic gate output, or may be provided by an external control circuit that generates a delayed version of the precharge clock or a multi-cycle signal.
    Type: Grant
    Filed: November 18, 2004
    Date of Patent: March 20, 2007
    Assignee: International Business Machines corporation
    Inventors: Hung Cai Ngo, Jente Benedict Kuang, Harmander Singh Deogun, AJ Kleinosowski
  • Publication number: 20070028157
    Abstract: A latch circuit having three latch stages generates a majority output value from the stages, senses when the latch stage outputs are not all equal, and feeds the majority output value back to inputs of the latch stages to reload the latch stages. The latch circuit uses a not-equal gate whose output is an error signal that can be monitored to determine when a single-event upset has occurred. A master stage is controlled by a first multiplexer which receives one system clock signal, while a slave stage is controlled by a second multiplexer which receives another system clock signal, and the latch stage outputs are connected to respective inputs of the not-equal gate, whose output is connected to second inputs of the multiplexers. The latch circuit is part of a latch control system, and reloading of the latch stages takes less than one cycle of the system clock (less than 500 picoseconds).
    Type: Application
    Filed: October 3, 2005
    Publication date: February 1, 2007
    Inventors: Alan Drake, Aj KleinOsowski, Andrew Martin
  • Publication number: 20060103431
    Abstract: A dynamic logic circuit incorporating reduced leakage state-retaining devices reduces power consumption of processors and other systems incorporating dynamic circuits. A keeper circuit provides a low leakage retention of the state of the output stage of the dynamic circuit so that an output circuit foot device can be disabled except when required for a transition in the output of the dynamic circuit. The keeper circuit includes a transistor having a smaller area than a corresponding transistor in the output circuit, thus reducing leakage through the gate of the output circuit when the keeper circuit is holding the output and the output circuit foot device is disabled. A self-clocked control of the output circuit foot device can be provided via a delayed version of the dynamic logic gate output, or may be provided by an external control circuit that generates a delayed version of the precharge clock or a multi-cycle signal.
    Type: Application
    Filed: November 18, 2004
    Publication date: May 18, 2006
    Applicant: International Business Machines Corporation
    Inventors: Hung Ngo, Jente Kuang, Harmander Deogun, AJ Kleinosowski
  • Publication number: 20060082389
    Abstract: A dynamic logic circuit apparatus and method for reducing leakage power consumption via separate clock and output stage control reduces power consumption of processors and other systems incorporating dynamic circuits. The power control signal may be a delayed version of the logic clock and turns on the output inverter foot device after the dynamic node has had sufficient time to evaluate, providing a fast evaluate time and reducing leakage through the inverter input when the foot device is off. Alternatively, a coarsely timed static power control signal may be used to control the inverter foot devices. The drains of the inverter foot devices can be commonly connected across multiple circuits, reducing the foot device total area.
    Type: Application
    Filed: November 18, 2004
    Publication date: April 20, 2006
    Applicant: International Business Machines Corporation
    Inventors: Hung Ngo, Jente Kuang, Harmander Deogun, AJ Kleinosowski