Patents by Inventor Ajay A. Virkar

Ajay A. Virkar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160108256
    Abstract: Nanoscale colorants are introduced to adjust the hue of transparent conductive films, such as to provide a whiter film. The transparent conductive films can have sparse metal conductive layers, which can be formed using silver nanowires. Color of the film can be evaluated using standard color parameters. In particular, values of color parameter b* can be reduced with the nanoscale colorants without unacceptably changing other parameters, such as haze, a* and transparency.
    Type: Application
    Filed: February 20, 2015
    Publication date: April 21, 2016
    Inventors: Xiqiang Yang, Yadong Cao, Yongxing Hu, Hua Gu, Ying-Syi Li, Ajay Virkar
  • Publication number: 20160096967
    Abstract: Optically transparent films can comprise a coating of nanodiamonds to introduce desirable properties, such as hardness, good thermal conductivity and an increased dielectric constant. In general, transparent conductive films can be formed with desirable property enhancing nanoparticles included in a transparent conductive layer and/or in a coating layer. Property enhancing nanoparticles can be formed from materials having a large hardness parameter, a large thermal conductivity and/or a large dielectric constant. Suitable polymers are incorporated as a binder in the layers with the property enhancing nanoparticles. The coatings with property enhancing nanoparticles can be solution coated and corresponding solutions are described.
    Type: Application
    Filed: December 19, 2014
    Publication date: April 7, 2016
    Inventors: Ajay Virkar, Faraz Azadi Manzour, Xiqiang Yang, Hua Gu
  • Publication number: 20160032127
    Abstract: Fusing nanowire inks are described that can also comprise a hydrophilic polymer binder, such as a cellulose based binder. The fusing nanowire inks can be deposited onto a substrate surface and dried to drive the fusing process. Transparent conductive films can be formed with desirable properties.
    Type: Application
    Filed: September 9, 2015
    Publication date: February 4, 2016
    Inventors: Ying-Syi Li, Xiqiang Yang, Yu Kambe, Xiaofeng Chen, Hua Gu, Steven Michael Lam, Melanie Mariko Inouye, Arthur Yung-Chi Cheng, Alex Da Zhang Tan, Christopher S. Scully, Ajay Virkar
  • Patent number: 9183968
    Abstract: Fusing nanowire inks are described that can also comprise a hydrophilic polymer binder, such as a cellulose based binder. The fusing nanowire inks can be deposited onto a substrate surface and dried to drive the fusing process. Transparent conductive films can be formed with desirable properties.
    Type: Grant
    Filed: July 31, 2014
    Date of Patent: November 10, 2015
    Assignee: C3Nano Inc.
    Inventors: Ying-Syi Li, Xiqiang Yang, Yu Kambe, Xiaofeng Chen, Hua Gu, Steven Michael Lam, Melanie Mariko Inouye, Arthur Yung-Chi Cheng, Alex Da Zhang Tan, Christopher S. Scully, Ajay Virkar
  • Patent number: 9150746
    Abstract: Fusing nanowire inks are described that can also comprise a hydrophilic polymer binder, such as a cellulose based binder. The fusing nanowire inks can be deposited onto a substrate surface and dried to drive the fusing process. Transparent conductive films can be formed with desirable properties.
    Type: Grant
    Filed: August 20, 2014
    Date of Patent: October 6, 2015
    Assignee: C3Nano Inc.
    Inventors: Ying-Syi Li, Xiqiang Yang, Yu Kambe, Xiaofeng Chen, Hua Gu, Steven Michael Lam, Melanie Mariko Inouye, Arthur Yung-Chi Cheng, Alex Da Zhang Tan, Christopher S. Scully, Ajay Virkar
  • Patent number: 9087995
    Abstract: Nanostructures are doped to set conductivity characteristics. In accordance with various example embodiments, nanostructures such as carbon nanotubes are doped with a halogenated fullerene type of dopant material. In some implementations, the dopant material is deposited from solution or by vapor deposition, and used to dope the nanotubes to increase the thermal and/or electrical conductivity of the nanotubes.
    Type: Grant
    Filed: September 9, 2013
    Date of Patent: July 21, 2015
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Ajay Virkar, Melburne C. LeMieux, Zhenan Bao
  • Publication number: 20150144380
    Abstract: Polymer binders, e.g., crosslinked polymer binders, have been found to be an effective film component in creating high quality transparent electrically conductive coatings or films comprising metal nanostructured networks. The metal nanowire films can be effectively patterned and the patterning can be performed with a high degree of optical similarity between the distinct patterned regions. Metal nanostructured networks are formed through the fusing of the metal nanowires to form conductive networks. Methods for patterning include, for example, using crosslinking radiation to pattern crosslinking of the polymer binder. The application of a fusing solution to the patterned film can result in low resistance areas and electrically resistive areas. After fusing the network can provide desirable low sheet resistances while maintaining good optical transparency and low haze. A polymer overcoat can further stabilize conductive films and provide desirable optical effects.
    Type: Application
    Filed: November 22, 2013
    Publication date: May 28, 2015
    Inventors: Xiqiang Yang, Ying-Syi Li, Yungyu Huang, Chris Scully, Clifford M. Morris, Ajay Virkar
  • Publication number: 20140302296
    Abstract: Inks for the formation of transparent conductive films are described that comprise an aqueous or alcohol based solvent, carbon nanotubes as well as suitable dopants. Suitable dopants generally comprise halogenated ionic dopants. In some embodiment, the inks comprise sulfonated dispersants that can effectively provide additional doping to improve electrical conductivity as well as stabilize the inks with respect to settling and/or improve the fluid properties of the inks for certain processing approaches. The inks can be processed into films with desirable levels of electrical conductivity and optical transparency.
    Type: Application
    Filed: September 24, 2012
    Publication date: October 9, 2014
    Applicant: C3NANO INC.
    Inventors: Melburne C. LeMieux, Ajay Virkar, Yung-Yu Huang
  • Publication number: 20140238833
    Abstract: Reduction/oxidation reagents have been found to be effective to chemically cure a sparse metal nanowire film into a fused metal nanostructured network through evidently a ripening type process. The resulting fused network can provide desirable low sheet resistances while maintaining good optical transparency. The transparent conductive films can be effectively applied as a single conductive ink or through sequential forming of a metal nanowire film with the subsequent addition of a fusing agent. The fused metal nanowire films can be effectively patterned, and the patterned films can be useful in devices, such as touch sensors.
    Type: Application
    Filed: February 26, 2013
    Publication date: August 28, 2014
    Applicant: C3NANO INC.
    Inventors: Ajay Virkar, Xiqiang Yang, Ying-Syi Li, Dennis McKean, Melburne C. LeMieux
  • Patent number: 8785763
    Abstract: Nanostructures are joined using one or more of a variety of materials and approaches. As consistent with various example embodiments, two or more nanostructures are joined at a junction between the nanostructures. The nanostructures may touch or be nearly touching at the junction, and a joining material is deposited and nucleates at the junction to couple the nanostructures together. In various applications, the nucleated joining material facilitates conductivity (thermal and/or electric) between the nanostructures. In some embodiments, the joining material further enhances conductivity of the nanostructures themselves, such as by growing along the nanostructures and/or doping the nanostructures.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: July 22, 2014
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Melburne C. LeMieux, Ajay Virkar, Zhenan Bao
  • Publication number: 20140138612
    Abstract: Nanostructures are doped to set conductivity characteristics. In accordance with various example embodiments, nanostructures such as carbon nanotubes are doped with a halogenated fullerene type of dopant material. In some implementations, the dopant material is deposited from solution or by vapor deposition, and used to dope the nanotubes to increase the thermal and/or electrical conductivity of the nanotubes.
    Type: Application
    Filed: September 9, 2013
    Publication date: May 22, 2014
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Ajay Virkar, Melburne C. LeMieux, Zhenan Bao
  • Publication number: 20140087164
    Abstract: Inks for the formation of transparent conductive films are described that comprise an aqueous or alcohol based solvent, carbon nanotubes as well as suitable dopants. Suitable dopants generally comprise halogenated ionic dopants. In some embodiment, the inks comprise sulfonated dispersants that can effectively provide additional doping to improve electrical conductivity as well as stabilize the inks with respect to settling and/or improve the fluid properties of the inks for certain processing approaches. The inks can be processed into films with desirable levels of electrical conductivity and optical transparency.
    Type: Application
    Filed: September 24, 2012
    Publication date: March 27, 2014
    Applicant: C3NANO INC.
    Inventors: Melburne C. LeMieux, Ajay Virkar, Yung-Yu Huang
  • Publication number: 20140001437
    Abstract: Nanostructures are joined using one or more of a variety of materials and approaches. As consistent with various example embodiments, two or more nanostructures are joined at a junction between the nanostructures. The nanostructures may touch or be nearly touching at the junction, and a joining material is deposited and nucleates at the junction to couple the nanostructures together. In various applications, the nucleated joining material facilitates conductivity (thermal and/or electric) between the nanostructures. In some embodiments, the joining material further enhances conductivity of the nanostructures themselves, such as by growing along the nanostructures and/or doping the nanostructures.
    Type: Application
    Filed: August 30, 2013
    Publication date: January 2, 2014
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Melburne C. LeMieux, Ajay Virkar, Zhenan Bao
  • Publication number: 20130341074
    Abstract: Metal nanowires, such as silver nanowires coated on a substrate were fused together to form fused metal nanowire networks that have greatly improved conductivity while maintaining good transparency. Materials formed form the fused metal nanowire networks described herein can have a transparency to visible light of at least about 85% and a sheet resistance of no more than about 100 Ohms/square or a transparency to visible light of at least about 90% and a sheet resistance of no more than about 250 Ohms/square. The method of forming such a fused metal nanowire networks are disclosed that involves exposure of metal nanowires to various fusing agents on a short timescale. When formed into a film, materials comprising the metal nanowire network demonstrate low sheet resistance while maintaining desirably high levels of optical transparency, making them suitable for transparent electrode formation.
    Type: Application
    Filed: June 22, 2012
    Publication date: December 26, 2013
    Inventors: Ajay Virkar, Ying-Syi Li, Melburne C. LeMieux
  • Publication number: 20130342221
    Abstract: Metal nanowires, such as silver nanowires coated on a substrate were sintered together to form fused metal nanowire networks that have greatly improved conductivity while maintaining good transparency and low haze. The method of forming such a fused metal nanowire networks are disclosed that involves exposure of metal nanowires to various fusing agents on a short timescale. The resulting sintered network can have a core-shell structure in which metal halide forms the shell. Additionally, effective methods are described for forming patterned structure with areas of sintered metal nanowire network with high conductivity and areas of un-sintered metal nanowires with low conductivity. The corresponding patterned films are also described.
    Type: Application
    Filed: October 30, 2012
    Publication date: December 26, 2013
    Applicant: C3NANO INC.
    Inventors: Ajay Virkar, Ying-Syi Li, Xiqiang Yang, Melburne C. LeMieux
  • Patent number: 8530271
    Abstract: Nanostructures are doped to set conductivity characteristics. In accordance with various example embodiments, nanostructures such as carbon nanotubes are doped with a halogenated fullerene type of dopant material. In some implementations, the dopant material is deposited from solution or by vapor deposition, and used to dope the nanotubes to increase the thermal and/or electrical conductivity of the nanotubes.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: September 10, 2013
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Ajay Virkar, Melburne C. Lemieux, Zhenan Bao
  • Patent number: 8524525
    Abstract: Nanostructures are joined using one or more of a variety of materials and approaches. As consistent with various example embodiments, two or more nanostructures are joined at a junction between the nanostructures. The nanostructures may touch or be nearly touching at the junction, and a joining material is deposited and nucleates at the junction to couple the nanostructures together. In various applications, the nucleated joining material facilitates conductivity (thermal and/or electric) between the nanostructures. In some embodiments, the joining material further enhances conductivity of the nanostructures themselves, such as by growing along the nanostructures and/or doping the nanostructures.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: September 3, 2013
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Melburne C. LeMieux, Ajay Virkar, Zhenan Bao
  • Patent number: 8119445
    Abstract: Organic semiconductor devices exhibit desirable mobility characteristics. In connection with various example embodiments, a monolayer of methyl-terminated molecules exhibits density characteristics that are sufficient to promote two-dimensional growth of organic semiconductor material formed thereupon. In some applications, the methyl-terminated molecules are sufficiently dense to dominate inter-layer interactions between layers of the organic semiconductor material.
    Type: Grant
    Filed: May 27, 2008
    Date of Patent: February 21, 2012
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Ajay A. Virkar, Stefan Christian Bernhardt Mannsfeld, Zhenan Bao
  • Publication number: 20110204330
    Abstract: Nanostructures are joined using one or more of a variety of materials and approaches. As consistent with various example embodiments, two or more nanostructures are joined at a junction between the nanostructures. The nanostructures may touch or be nearly touching at the junction, and a joining material is deposited and nucleates at the junction to couple the nanostructures together. In various applications, the nucleated joining material facilitates conductivity (thermal and/or electric) between the nanostructures. In some embodiments, the joining material further enhances conductivity of the nanostructures themselves, such as by growing along the nanostructures and/or doping the nanostructures.
    Type: Application
    Filed: January 21, 2011
    Publication date: August 25, 2011
    Inventors: Melburne C. LeMieux, Ajay Virkar, Zhenan Bao
  • Publication number: 20110204319
    Abstract: Nanostructures are doped to set conductivity characteristics. In accordance with various example embodiments, nanostructures such as carbon nanotubes are doped with a halogenated fullerene type of dopant material. In some implementations, the dopant material is deposited from solution or by vapor deposition, and used to dope the nanotubes to increase the thermal and/or electrical conductivity of the nanotubes.
    Type: Application
    Filed: January 21, 2011
    Publication date: August 25, 2011
    Inventors: Ajay Virkar, Melburne C. Lemieux, Zhenan Bao