Patents by Inventor Akihisa Inoue

Akihisa Inoue has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6089992
    Abstract: In a golf club head having a face body, the face body is composed of a hybrid of an amorphous phase layer and a crystal phase layer. The crystal phase layer is disposed on a reverse face side of a face. And, thickness of the face body is 0.5 mm to 5.0 mm, thickness of the amorphous phase layer is, on average in whole area of the face body, more than 50% of the thickness of the face body, and thickness of the crystal phase layer is arranged to be 0.01 mm to 3.0 mm.
    Type: Grant
    Filed: August 6, 1998
    Date of Patent: July 18, 2000
    Assignees: Sumitomo Rubber Industries, Inc., Akihisa Inoue
    Inventors: Masahide Onuki, Tetsuo Yamaguchi, Haruyoshi Minamiguchi, Akio Ohnishi, Akihisa Inoue
  • Patent number: 6086651
    Abstract: The present invention relates to a sinter and a casting comprising a high-hardness glassy alloy containing at least Fe and at least a metalloid element and having a temperature interval .DELTA.Tx of a supercooled liquid as expressed by .DELTA.Tx=Tx-Tg (where, Tx is a crystallization temperature and Tg is a glass transition temperature) of at least 20.degree. C., which permit easy achievement of a complicated concave/convex shape.
    Type: Grant
    Filed: August 26, 1998
    Date of Patent: July 11, 2000
    Assignee: Alp Electric Co., Ltd.
    Inventors: Takao Mizushima, Akihiro Makino, Akihisa Inoue
  • Patent number: 6083325
    Abstract: A method for making a Fe-based soft magnetic alloy where an alloy melt is injected onto a moving cooling unit to form an amorphous alloy ribbon. The alloy melt contains Fe as a main component, B and at least one metallic element M selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Mo and W, the composition of the alloy melt being selected such that the resulting amorphous alloy ribbon is characterized by a first crystallization temperature at which fine grain bcc Fe crystallites precipitate, and a second crystallization temperature at which a compound phase containing Fe--B and/or Fe--M precipitates. The amorphous alloy ribbon is then annealed at a temperature which is higher that the first crystallization temperature and less than the second crystallization temperature for an annealing time in the range of 0 minutes to 20 minutes.
    Type: Grant
    Filed: July 11, 1997
    Date of Patent: July 4, 2000
    Assignee: Alps Electric Co., Ltd.
    Inventors: Teruo Bitoh, Yasuo Hayakawa, Takashi Hatanai, Akihiro Makino, Akihisa Inoue, Tsuyoshi Masumoto
  • Patent number: 6077367
    Abstract: The present invention provides a method of producing a glassy alloy which has soft magnetism at room temperature and high resistivity and which can be easily obtained in a bulk shape thicker than an amorphous alloy ribbon obtained by a conventional melt quenching method. In this method, a melted metal having a supercooled liquid temperature width .DELTA.T.sub.x of 35.degree. C. or more, which is expressed by the equation .DELTA.T.sub.x =T.sub.x -T.sub.g (wherein T.sub.x indicates the crystallization temperature, and T.sub.g indicates the glass transition temperature), is sprayed on a cooling body under movement to form a ribbon-shaped glassy alloy material; and the glassy alloy is then heat-treated by heating at a heating rate of 0.15 to 3.degree. C./sec and then cooling.
    Type: Grant
    Filed: February 19, 1998
    Date of Patent: June 20, 2000
    Assignees: Alps Electric Co., Ltd., Akihisa Inoue
    Inventors: Takao Mizushima, Akihiro Makino, Akihisa Inoue
  • Patent number: 6074497
    Abstract: A highly wear-resistant aluminum-based composite alloy has improved wear resistant itself and the wear amount of the opposed Fe-based material is decreased as compared with the conventional wear-resistant aluminum alloys. The inventive composite alloy has a structure that at least either a dispersing phase selected from the group consisting of hard fine particles or a solid-lubricant particles having average diameter of 10 um or less is dispersed in an aluminum-alloy matrix which contains quasi-crystals.
    Type: Grant
    Filed: July 22, 1997
    Date of Patent: June 13, 2000
    Assignees: Akihisa Inoue, Teikoku Piston Ring Company Limited, YKK Corporation, Mitsubishi Materials Corporation, Yamaha Corporation
    Inventors: Akihisa Inoue, Masahiro Oguchi, Junichi Nagahora, Masato Otsuki, Toru Kohno, Shin Takeda, Yuma Horio
  • Patent number: 6034450
    Abstract: In a stepping motor having a stator provided with an electromagnet and a rotor composed of a hard magnetic alloy, the hard magnetic alloy comprises at least one element T of Fe and Co, at least one element R of rare earth elements and B, has a remanence ratio of at least 0.7, remanent magnetization (Ir) of at least 120 emu/g and coercive force (iHc) of at least 1 kOe and includes a fine crystalline phase having an average crystal grain size of 100 nm or less as a main phase. The hard magnetic alloy is solidified and compacted by making use of a softening phenomenon which arises when the amorphous phase contained in the structure of the hard magnetic alloy is crystallized. A method of manufacturing the hard magnetic alloy used to the stepping motor is also disclosed.
    Type: Grant
    Filed: July 8, 1998
    Date of Patent: March 7, 2000
    Assignee: Alps Electric Co., Ltd.
    Inventors: Akinori Kojima, Akihiro Makino, Takashi Hatanai, Yutaka Yamamoto, Akihisa Inoue
  • Patent number: 6027586
    Abstract: Disclosed herein is a process for forming an amorphous alloy material capable of showing glass transition, which comprises holding the material between frames arranged in combination; and heating the material at a temperature between its glass transition temperature (Tg) and its crystallization temperature (Tx) and, at the same time, producing a pressure difference between opposite sides of the material, whereby the material is brought into close contact against a forming mold disposed on one side of the material. As an alternative, the forming mold is brought into close contact against the amorphous material in a direction opposite to the pressing direction for the amorphous material. By the above processes, precision-formed products of amorphous alloys can be manufactured and supplied at low cost.
    Type: Grant
    Filed: March 17, 1994
    Date of Patent: February 22, 2000
    Assignees: Tsuyoshi Masumoto, Akihisa Inoue, Yoshida Kogyo K.K.
    Inventors: Tsuyoshi Masumoto, Akihisa Inoue, Nobuyuki Nishiyama, Hiroyuki Horimura, Toshisuke Shibata
  • Patent number: 6017403
    Abstract: An aluminum-based alloy having the general formula Al.sub.x L.sub.y M.sub.z (wherein L is Mn or Cr; M is Ni, Co, and/or Cu; and x, y, and z, representing a composition ratio in atomic percentages, satisfy the relationships x+y+z=100, 75.ltoreq.x.ltoreq.95, 2.ltoreq.y.ltoreq.15, and 0.5.ltoreq.z.ltoreq.10) having a metallographic structure comprising a quasi-crystalline phase possesses high strength and high rigidity. In order to enhance the ductility and toughness of the aluminum-based alloy, the atomic percentage of M may be further limited to 0.5.ltoreq.z.ltoreq.4, and more preferably to 0.5.ltoreq.z.ltoreq.3. The aluminum-based alloy is useful as a structural material for aircraft, vehicles and ships, and for engine parts; as material for sashes, roofing materials, and exterior materials for use in construction; or as materials for use in marine equipment, nuclear reactors, and the like.
    Type: Grant
    Filed: February 15, 1996
    Date of Patent: January 25, 2000
    Assignees: Yamaha Corporation, Isuyoshi Masumoto, Akihisa Inoue
    Inventors: Tsuyoshi Masumoto, Akihisa Inoue, Yuma Horio
  • Patent number: 6004407
    Abstract: Hard magnetic materials of the present invention contain at least one element of Fe, Co and Ni as a main component, at least one element M of Zr, Nb, Ta and Hf, at least one rare earth element R and B. The texture of the materials has at least 70% of fine crystalline phase having an average grain size of 100 nm or less, and the residue having an amorphous phase, the fine crystalline phase mainly composed of bcc-Fe or bcc-Fe compound, Fe--B compound and/or R.sub.2 Fe.sub.14 B.sub.1.
    Type: Grant
    Filed: September 20, 1996
    Date of Patent: December 21, 1999
    Assignees: Alps Electric Co., Ltd., Akihisa Inoue, Tsuyoshi Masumoto
    Inventors: Akinobu Kojima, Akihiro Makino, Akihisa Inoue, Tsuyoshi Masumoto
  • Patent number: 6001193
    Abstract: A method of producing a hard magnetic alloy compact at low cost, in which an alloy that contains not less than 50% by weight of an amorphous phase and exhibits hard magnetism in a crystallized state is solidified and molded at around its crystallization temperature under applied pressure by utilizing the softening phenomenon occurring during a crystallization process. The resulting compact has high hard magnetic characteristics and can be applied as permanent magnet members such as in motors, actuators, and speakers.
    Type: Grant
    Filed: March 25, 1997
    Date of Patent: December 14, 1999
    Assignees: Alps Electric Co., Ltd., Akihisa Inoue, Tsuyoshi Masumoto
    Inventors: Akinori Kojima, Takao Mizushima, Akihiro Makino, Akihisa Inoue, Tsuyoshi Masumoto
  • Patent number: 5980652
    Abstract: An alloy material 4 received in a melting hearth 1 is melted by high-density energy supplied from a heat source 5. The molten alloy is transferred to a forced-cooled die 3 having a cavity 2 defining the profile of a product, and quenched to an amorphous state. The alloy has the composition represented by the general formula of Zr.sub.100-a-b-c A.sub.a B.sub.b C.sub.c, wherein the mark A represents one or more elements selected from Ti, Hf, Al and Ga, the mark B represents one or more elements selected from Fe, Co, Ni and Cu, the mark C represents one or more elements selected from Pd, Pt, Au and Ag, and the marks a-c represent the atomic ratios of respective elements A-C under the conditions of a=5-20, b=15-45, c.ltoreq.10 and a+b+c=30-70. The differential temperature region .DELTA.T (=T.sub.x -T.sub.g) in the supercooled liquid phase of the Zr alloy represented by the difference between the crystallization point T.sub.x and the glass transition point T.sub.g is preferably 100 K or more.
    Type: Grant
    Filed: February 23, 1998
    Date of Patent: November 9, 1999
    Assignee: Research Developement Corporation of Japan
    Inventors: Akihisa Inoue, Tsuyoshi Masumoto, Tao Zhang, Yoshiyuki Shinohara
  • Patent number: 5976274
    Abstract: The present invention provides an amorphous alloy containing at least one element of Fe, Co, and Ni as a main component, at least one element of Zr, Nb, Ta, Hf, Mo, Ti and V, and B, wherein the temperature width .DELTA.Tx of a supercooled liquid region expressed by the equation .DELTA.Tx=Tx-Tg (wherein Tx indicates the crystallization temperature, and Tg indicates the glass transition temperature) is 20.degree. C. or more. The amorphous alloy has excellent soft magnetic properties and high hardness, and can suitably be used for a transformer, a magnetic head, a tool, etc.
    Type: Grant
    Filed: January 22, 1998
    Date of Patent: November 2, 1999
    Assignee: Akihisa Inoue
    Inventors: Akihisa Inoue, Tao Zhang
  • Patent number: 5976273
    Abstract: A hard magnetic material of the present invention contains Fe as a main component and further contains elements R and L, and B. Not less than 60% of the structure of the hard magnetic material is composed of a fine crystalline phase having an average grain size of not more than 100 nm and the rest is composed of an amorphous phase. The fine crystalline phase essentially consists of bcc-Fe and contains at least R.sub.2 Fe.sub.14 B.sub.1.
    Type: Grant
    Filed: June 25, 1997
    Date of Patent: November 2, 1999
    Assignees: Alps Electric Co., Ltd., Akihisa Inoue
    Inventors: Akira Takeuchi, Tao Zhang, Akihisa Inoue
  • Patent number: 5961745
    Abstract: The present invention is directed to provide a Fe based glassy alloy which exhibits soft magnetic characteristics at room temperature, has a thickness greater than that of a conventional amorphous alloy prepared by a liquid quenching process and can be easily formed in bulk. The Fe based glassy alloy in accordance with the present invention has a temperature distance .DELTA.T.sub.x, expressed by the equation .DELTA.T.sub.x =T.sub.x -T.sub.g, of a supercooled liquid of not less than 35.degree. C., wherein Tx indicates crystallization temperature and Tg represents glass transition temperature.
    Type: Grant
    Filed: March 26, 1997
    Date of Patent: October 5, 1999
    Assignees: Alps Electric Co., Ltd., Akihisa Inoue, Japan Science and Technology Corp.
    Inventors: Akihisa Inoue, Takao Mizushima, Kouichi Fujita, Oki Yamaguchi, Akihiro Makino
  • Patent number: 5954501
    Abstract: Orthodontic appliances in accordance with the present invention are formed from amorphous alloys having a supercooling liquid region. The appliances have high corrosion resistance, high durability and high strength. The appliances are particularly useful when changes and adjustments in the orthodontic state become necessary in the course of orthodontic treatment. The present invention also provides improvements in the base surfaces of orthodontic appliances adapted to be bonded to tooth surfaces. The appliances can consequently be securely affixed to tooth surfaces.
    Type: Grant
    Filed: April 14, 1995
    Date of Patent: September 21, 1999
    Assignee: GAC International, Inc.
    Inventors: Tsuyoshi Masumoto, Akihisa Inoue, Tao Zhang, Mikio Mottate, Kikuo Nishi
  • Patent number: 5935347
    Abstract: The present invention provides an Fe-base soft magnetic alloy and a laminated magnetic core formed by using the alloy which contains Fe as a main component and at least one element M and B selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Mo and W, in which at least 50% of the crystalline structure comprises fine crystalline grains having an average crystal grain size of 30 nm or less and a body-centered cubic structure, and the fracture strain at 300.degree. C. or less is 1. The ratios of the components Fe, and elements M and B are 75 to 93 atomic %, 4 to 9 atomic % and 0.5 to 18 atomic %, respectively. The alloy may contain other additive elements such as Cr, Ru, Hr, Ir, Si, Al, Ge, Ga and the like.
    Type: Grant
    Filed: November 29, 1996
    Date of Patent: August 10, 1999
    Assignee: Alps Electric Co., Ltd.
    Inventors: Kiyonori Suzuki, Akihiro Makino, Shoji Yoshida, Katsuaki Hangai, Tsuyoshi Masumoto, Akihisa Inoue
  • Patent number: 5919041
    Abstract: Orthodontic appliances in accordance with the present invention are formed from amorphous alloys having a supercooling liquid region. The appliances have high corrosion resistance, high durability and high strength. The appliances are particularly useful when changes and adjustments in the orthodontic state become necessary in the course of orthodontic treatment. The present invention also provides improvements in the base surfaces of orthodontic appliances adapted to be bonded to tooth surfaces. The appliances can consequently be securely affixed to tooth surfaces.
    Type: Grant
    Filed: March 2, 1998
    Date of Patent: July 6, 1999
    Assignee: GAC International, Inc.
    Inventors: Tsuyoshi Masumoto, Akihisa Inoue, Tao Zhang, Mikio Mottate, Kikuo Nishi
  • Patent number: 5876519
    Abstract: An Fe-based amorphous alloy having a compositional formula in atomic percent represented by Fe.sub.100-a-b-c-d-e-f Al.sub.a Ga.sub.b P.sub.c C.sub.d B.sub.e Si.sub.f, wherein a to f satisfy 4.ltoreq.a.ltoreq.6, 1.ltoreq.b.ltoreq.3, 9.ltoreq.c.ltoreq.12, 5.ltoreq.d.ltoreq.7, 3.ltoreq.e.ltoreq.5 and 0.25.ltoreq.f.ltoreq.4. The Fe-based amorphous alloy is an amorphous magnetic material having an excellent amorphous phase-forming ability, and can easily form an amorphous material having a thickness of 1.5 mm or above by a mold casting method realizing a cooling speed of about 10.sup.3 K/s. Also, because the amorphous alloy has a supercooled liquid region of 50 K or larger, by applying a working method utilizing a super cooled state, amorphous magnetic materials of various form can be prepared.
    Type: Grant
    Filed: March 17, 1997
    Date of Patent: March 2, 1999
    Assignee: Unitika Ltd.
    Inventors: Akihisa Inoue, Akira Murakami
  • Patent number: 5858131
    Abstract: An aluminum-based alloy having the general formula Al.sub.100 -(a+b)Q.sub.a M.sub.b (wherein Q is V, Mo, Fe, W, Nb, and/or Pd; M is Mn, Fe, Co, Ni, and/or Cu; and a and b, representing a composition ratio in atomic percentages, satisfy the relationships 1.ltoreq.a.ltoreq.8, 0<b<5, and 3.ltoreq.a+b.ltoreq.8) having a metallographic structure comprising a quasi-crystalline phase, wherein the difference in the atomic radii between Q and M exceeds 0.01 .ANG., and said alloy does not contain rare earths, possesses high strength and high rigidity. The aluminum-based alloy is useful as a structural material for aircraft, vehicles and ships, and for engine parts; as material for sashes, roofing materials, and exterior materials for use in construction; or as materials for use in marine equipment, nuclear reactors, and the like.
    Type: Grant
    Filed: May 14, 1997
    Date of Patent: January 12, 1999
    Assignees: Tsuyoshi Masumoto, Akihisa Inoue, Yamaha Corp.
    Inventors: Akihisa Inoue, Hisamichi Kimura, Yuma Horio
  • Patent number: 5855334
    Abstract: A rectangular parallelepipedic case includes four or more walls formed by bending a single plate. To produce the case, a double plate is used. The double plate is formed from plastic by extrusion, and first and second plate elements confronted with each other. Partition portions interconnect the first and second plate elements, and extend in the direction of the extrusion, to define plural hollow chambers between the first and second plate elements. The double plate is bent along bend lines substantially at a right angle. At least one of the bend lines is at least partially curved.
    Type: Grant
    Filed: June 13, 1997
    Date of Patent: January 5, 1999
    Assignee: Fuji Photo Film Co., Ltd.
    Inventors: Hirofumi Abe, Akihisa Inoue, Shinichi Takahashi