Patents by Inventor Akihisa Shimomura

Akihisa Shimomura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7279372
    Abstract: Island-like semiconductor films and markers are formed prior to laser irradiation. Markers are used as positional references so as not to perform laser irradiation all over the semiconductor within a substrate surface, but to perform a minimum crystallization on at least indispensable portion. Since the time required for laser crystallization can be reduced, it is possible to increase the substrate processing speed. By applying the above-described constitution to a conventional SLS method, a means for solving such problem in the conventional SLS method that the substrate processing efficiency is insufficient, is provided.
    Type: Grant
    Filed: July 2, 2004
    Date of Patent: October 9, 2007
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Akihisa Shimomura, Hisashi Ohtani, Masaaki Hiroki, Koichiro Tanaka, Aiko Shiga, Mai Akiba, Kenji Kasahara
  • Publication number: 20070195837
    Abstract: It is an object to provide a laser apparatus, a laser irradiating method and a manufacturing method of a semiconductor device that can perform uniform a process with a laser beam to an object uniformly. The present invention provides a laser apparatus comprising an optical system for sampling a part of a laser beam emitted from an oscillator, a sensor for generating an electric signal including fluctuation in energy of the laser beam as a data from the part of the laser beam, a means for performing signal processing to the electrical signal to grasp a state of the fluctuation in energy of the laser beam, and controlling a relative speed of an beam spot of the laser beam to an object in order to change in phase with the fluctuation in energy of the laser beam.
    Type: Application
    Filed: April 5, 2007
    Publication date: August 23, 2007
    Inventors: Hidekazu Miyairi, Akihisa Shimomura, Tamae Takano, Masaki Koyama
  • Patent number: 7260135
    Abstract: The present invention provides a light emitting device typified by a laser oscillator using an electroluminescent material that can enhance directivity of emitted laser light and resistance to a physical impact. A light emitting device includes a first electrode having a convex portion or a concave portion, an electroluminescent layer formed over the first electrode to overlap the convex portion or the concave portion, and a second electrode having a convex portion or a concave portion formed over the electroluminescent layer to overlap the convex portion or the concave portion. In the light emitting device, the first electrode has a curved surface in the convex portion or the concave portion, a center of a curvature of the curved surface is located on an opposite side of the second electrode, and laser light is emitted by oscillating light generated in the electroluminescent layer between the first electrode and the second electrode.
    Type: Grant
    Filed: September 23, 2004
    Date of Patent: August 21, 2007
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Akihisa Shimomura, Ryoji Nomura, Yasuyuki Arai
  • Publication number: 20070170154
    Abstract: When the laser light having the harmonic is used for crystallizing the semiconductor film, there is a problem that the energy conversion efficiency from the fundamental wave to the harmonic is low. And since the laser light converted into the harmonic has lower energy than the fundamental wave, it is difficult to enhance the throughput by enlarging the area of the beam spot. The present invention provides a laser irradiation apparatus emitting the fundamental wave simultaneously with the wavelength not longer than that of the fundamental wave, typically the harmonic converted from the fundamental wave, wherein the laser light emitted from one resonator having the fundamental wave and the wavelength not longer than that of the fundamental wave are irradiated without being separated.
    Type: Application
    Filed: February 26, 2007
    Publication date: July 26, 2007
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Akihisa Shimomura, Hironobu Shoji
  • Patent number: 7247527
    Abstract: It is an object of the present invention to provide a method for manufacturing a crystalline semiconductor film comprising the steps of crystallizing with the use of the metal element for promoting the crystallization to control the orientation and irradiating the laser once to form a crystalline semiconductor film having a small crystal grain arranged in a grid pattern at a regular interval. In the present invention made in view of the above object, a ridge forms a grid pattern on a surface of the crystalline semiconductor film in such a way that a crystalline semiconductor film is formed by adding the metal element for promoting the crystallization to the amorphous semiconductor film and the pulsed laser whose polarization direction is controlled is irradiated thereto. As the means for controlling the polarization direction, a half-wave plate or a mirror is used.
    Type: Grant
    Filed: July 28, 2004
    Date of Patent: July 24, 2007
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Akihisa Shimomura, Masaki Koyama, Hironobu Shoji
  • Patent number: 7241708
    Abstract: Continuous wave laser apparatus with enhanced processing efficiency is provided as well as a method of manufacturing a semiconductor device using the laser apparatus. The laser apparatus has: a laser oscillator; a unit for rotating a process object; a unit for moving the center of the rotation along a straight line; and an optical system for processing laser light that is outputted from the laser oscillator to irradiate with the laser light a certain region within the moving range of the process object. The laser apparatus is characterized in that the certain region is on a line extended from the straight line and that the position at which the certain region overlaps the process object is moved by rotating the process object while moving the center of the rotation along the straight line.
    Type: Grant
    Filed: September 9, 2002
    Date of Patent: July 10, 2007
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Koichiro Tanaka, Hidekazu Miyairi, Aiko Shiga, Akihisa Shimomura, Mai Akiba
  • Publication number: 20070141733
    Abstract: A laser beam irradiation method that achieves uniform crystallization, even if a film thickness of an a-Si film or the like fluctuates, is provided. The present invention provides a laser beam irradiation method in which a non-single crystal semiconductor film is formed on a substrate having an insulating surface and a laser beam having a wavelength longer than 350 nm is irradiated to the non-single crystal semiconductor film, thus crystallizing the non-single crystal silicon film. The non-single crystal semiconductor film has a film thickness distribution within the surface of the substrate, and a differential coefficient of a laser beam absorptivity with respect to the film thickness of the non-single crystal semiconductor film is positive.
    Type: Application
    Filed: February 9, 2007
    Publication date: June 21, 2007
    Applicant: Semicondutor Energy Laboratory Co., Ltd.
    Inventors: Akihisa Shimomura, Kenji Kasahara, Aiko Shiga, Hidekazu Miyairi, Koichiro Tanaka, Koji Dairiki
  • Publication number: 20070141816
    Abstract: The objective of the invention is to provide a method of fabricating semiconductor device using a laser crystallization method capable of preventing a grain boundary from being formed on the channel-forming region of a TFT and preventing the mobility of the TFT from extremely deteriorating, on-current from decreasing, or off-current from increasing due to a grain boundary and a semiconductor device fabricated by the fabrication method. Striped (banded) or rectangular concave and convex portions are formed. Then, a semiconductor film formed on an insulating film is irradiated with a laser beam diagonally to the longitudinal direction of concave and convex portions on the insulating film.
    Type: Application
    Filed: February 9, 2007
    Publication date: June 21, 2007
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hidekazu Miyairi, Atsuo Isobe, Tomoaki Moriwaka, Akihisa Shimomura
  • Publication number: 20070120127
    Abstract: It is a problem to provide a semiconductor device production system using a laser crystallization method capable of preventing grain boundaries from forming in a TFT channel region and further preventing conspicuous lowering in TFT mobility due to grain boundaries, on-current decrease or off-current increase. An insulation film is formed on a substrate, and a semiconductor film is formed on the insulation film. Due to this, preferentially formed is a region in the semiconductor film to be concentratedly applied by stress during crystallization with laser light. Specifically, a stripe-formed or rectangular concavo-convex is formed on the semiconductor film. Continuous-oscillation laser light is irradiated along the striped concavo-convex or along a direction of a longer or shorter axis of rectangle.
    Type: Application
    Filed: January 29, 2007
    Publication date: May 31, 2007
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Atsuo Isobe, Koji Dairiki, Hiroshi Shibata, Chiho Kokubo, Tatsuya Arao, Masahiko Hayakawa, Hidekazu Miyairi, Akihisa Shimomura, Koichiro Tanaka, Shunpei Yamazaki, Mai Akiba
  • Patent number: 7223306
    Abstract: It is an object to provide a laser apparatus, a laser irradiating method and a manufacturing method of a semiconductor device that can perform uniform a process with a laser beam to an object uniformly. The present invention provides a laser apparatus comprising an optical system for sampling a part of a laser beam emitted from an oscillator, a sensor for generating an electric signal including fluctuation in energy of the laser beam as a data from the part of the laser beam, a means for performing signal processing to the electrical signal to grasp a state of the fluctuation in energy of the laser beam, and controlling a relative speed of an beam spot of the laser beam to an object in order to change in phase with the fluctuation in energy of the laser beam.
    Type: Grant
    Filed: September 17, 2003
    Date of Patent: May 29, 2007
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hidekazu Miyairi, Akihisa Shimomura, Tamae Takano, Masaki Koyama
  • Patent number: 7208395
    Abstract: When the laser light having the harmonic is used for crystallizing the semiconductor film, there is a problem that the energy conversion efficiency from the fundamental wave to the harmonic is low. And since the laser light converted into the harmonic has lower energy than the fundamental wave, it is difficult to enhance the throughput by enlarging the area of the beam spot. The present invention provides a laser irradiation apparatus emitting the fundamental wave simultaneously with the wavelength not longer than that of the fundamental wave, typically the harmonic converted from the fundamental wave, wherein the laser light emitted from one resonator having the fundamental wave and the wavelength not longer than that of the fundamental wave are irradiated without being separated.
    Type: Grant
    Filed: June 21, 2004
    Date of Patent: April 24, 2007
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Akihisa Shimomura, Hironobu Shoji
  • Publication number: 20070085080
    Abstract: To provide a semiconductor device composed of a semiconductor element or a group of semiconductor elements, in which a crystalline semiconductor film having as few grain boundaries as possible in a channel formation region is formed on an insulating surface, which can operate at high speed, which have high current drive performance, and which are less fluctuated between elements.
    Type: Application
    Filed: December 11, 2006
    Publication date: April 19, 2007
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Atsuo Isobe, Shunpei Yamazaki, Chiho Kokubo, Koichiro Tanaka, Akihisa Shimomura, Tatsuya Arao, Hidekazu Miyairi
  • Publication number: 20070070346
    Abstract: A semiconductor device production system using a laser crystallization method is provided which can avoid forming grain boundaries in a channel formation region of a TFT, thereby preventing grain boundaries from lowering the mobility of the TFT greatly, from lowering ON current, and from increasing OFF current. Rectangular or stripe pattern depression and projection portions are formed on an insulating film. A semiconductor film is formed on the insulating film. The semiconductor film is irradiated with continuous wave laser light by running the laser light along the stripe pattern depression and projection portions of the insulating film or along the major or minor axis direction of the rectangle. Although continuous wave laser light is most preferred among laser light, it is also possible to use pulse oscillation laser light in irradiating the semiconductor film.
    Type: Application
    Filed: November 17, 2006
    Publication date: March 29, 2007
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Atsuo Isobe, Shunpei Yamazaki, Koji Dairiki, Hiroshi Shibata, Chiho Kokubo, Tatsuya Arao, Masahiko Hayakawa, Hidekazu Miyairi, Akihisa Shimomura, Koichiro Tanaka, Mai Akiba
  • Publication number: 20070054443
    Abstract: A semiconductor device having high electrical characteristics is manufactured at low cost and with high throughput. A semiconductor film is crystallized or activated by being irradiated with a laser beam emitted from one fiber laser. Alternatively, laser beams are emitted from a plurality of fiber lasers and coupled by a coupler to be one laser beam, and then a semiconductor film is irradiated with the coupled laser beam so as to be crystallized or activated.
    Type: Application
    Filed: August 21, 2006
    Publication date: March 8, 2007
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Akihisa Shimomura
  • Patent number: 7179699
    Abstract: The objective of the invention is to provide a method of fabricating semiconductor device using a laser crystallization method capable of preventing a grain boundary from being formed on the channel-forming region of a TFT and preventing the mobility of the TFT from extremely deteriorating, on-current from decreasing, or off-current from increasing due to a grain boundary and a semiconductor device fabricated by the fabrication method. Striped (banded) or rectangular concave and convex portions are formed. Then, a semiconductor film formed on an insulating film is irradiated with a laser beam diagonally to the longitudinal direction of concave and convex portions on the insulating film.
    Type: Grant
    Filed: August 18, 2004
    Date of Patent: February 20, 2007
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hidekazu Miyairi, Atsuo Isobe, Tomoaki Moriwaka, Akihisa Shimomura
  • Publication number: 20070034877
    Abstract: An insulating film having depressions and projections are formed on a substrate. A semiconductor film is formed on the insulating film. Thus, for crystallization by using laser light, a part where stress concentrates is selectively formed in the semiconductor film. More specifically, stripe or rectangular depressions and projections are provided in the semiconductor film. Then, continuous-wave laser light is irradiated along the stripe depressions and projections formed in the semiconductor film or in a direction of a major axis or minor axis of the rectangle.
    Type: Application
    Filed: September 29, 2006
    Publication date: February 15, 2007
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Atsuo Isobe, Koji Dairiki, Hiroshi Shibata, Chiho Kokubo, Tatsuya Arao, Masahiko Hayakawa, Hidekazu Miyairi, Akihisa Shimomura, Koichiro Tanaka, Shunpei Yamazaki, Mai Akiba
  • Patent number: 7176490
    Abstract: It is a problem to provide a semiconductor device production system using a laser crystallization method capable of preventing grain boundaries from forming in a TFT channel region and further preventing conspicuous lowering in TFT mobility due to grain boundaries, on-current decrease or off-current increase. An insulation film is formed on a substrate, and a semiconductor film is formed on the insulation film. Due to this, preferentially formed is a region in the semiconductor film to be concentratedly applied by stress during crystallization with laser light. Specifically, a stripe-formed or rectangular concavo-convex is formed on the semiconductor film. Continuous-oscillation laser light is irradiated along the striped concavo-convex or along a direction of a longer or shorter axis of rectangle.
    Type: Grant
    Filed: March 24, 2005
    Date of Patent: February 13, 2007
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Atsuo Isobe, Koji Dairiki, Hiroshi Shibata, Chiho Kokubo, Tatsuya Arao, Masahiko Hayakawa, Hidekazu Miyairi, Akihisa Shimomura, Koichiro Tanaka, Shunpei Yamazaki, Mai Akiba
  • Patent number: 7176042
    Abstract: A laser beam irradiation method that achieves uniform crystallization, even if a film thickness of an a-Si film or the like fluctuates, is provided. The present invention provides a laser beam irradiation method in which a non-single crystal semiconductor film is formed on a substrate having an insulating surface and a laser beam having a wavelength longer than 350 nm is irradiated to the non-single crystal semiconductor film, thus crystallizing the non-single crystal silicon film. The non-single crystal semiconductor film has a film thickness distribution within the surface of the substrate, and a differential coefficient of a laser beam absorptivity with respect to the film thickness of the non-single crystal semiconductor film is positive.
    Type: Grant
    Filed: July 6, 2004
    Date of Patent: February 13, 2007
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Akihisa Shimomura, Kenji Kasahara, Aiko Shiga, Hidekazu Miyairi, Koichiro Tanaka, Koji Dairiki
  • Publication number: 20070015323
    Abstract: An objective is to provide a method of manufacturing a semiconductor device, and a semiconductor device manufactured by using the manufacturing method, in which a laser crystallization method is used that is capable of preventing the formation of grain boundaries in TFT channel formation regions, and is capable of preventing conspicuous drops in TFT mobility, reduction in the ON current, and increases in the OFF current, all due to grain boundaries. Depressions and projections with stripe shape or rectangular shape are formed. Continuous wave laser light is then irradiated to a semiconductor film formed on an insulating film along the depressions and projections with stripe shape of the insulating film, or along a longitudinal axis direction or a transverse axis direction of the rectangular shape. Note that although it is most preferable to use continuous wave laser light at this point, pulse wave laser light may also be used.
    Type: Application
    Filed: August 31, 2006
    Publication date: January 18, 2007
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Atsuo Isobe, Shunpei Yamazaki, Chiho Kokubo, Koichiro Tanaka, Akihisa Shimomura, Tatsuya Arao, Hidekazu Miyairi, Mai Akiba
  • Patent number: 7148507
    Abstract: A semiconductor device production system using a laser crystallization method is provided which can avoid forming grain boundaries in a channel formation region of a TFT, thereby preventing grain boundaries from lowering the mobility of the TFT greatly, from lowering ON current, and from increasing OFF current. Rectangular or stripe pattern depression and projection portions are formed on an insulating film. A semiconductor film is formed on the insulating film. The semiconductor film is irradiated with continuous wave laser light by running the laser light along the stripe pattern depression and projection portions of the insulating film or along the major or minor axis direction of the rectangle. Although continuous wave laser light is most preferred among laser light, it is also possible to use pulse oscillation laser light in irradiating the semiconductor film.
    Type: Grant
    Filed: December 17, 2004
    Date of Patent: December 12, 2006
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Atsuo Isobe, Shunpei Yamazaki, Koji Dairiki, Hiroshi Shibata, Chiho Kokubo, Tatsuya Arao, Masahiko Hayakawa, Hidekazu Miyairi, Akihisa Shimomura, Koichiro Tanaka, Mai Akiba
  • Patent number: 4949874
    Abstract: A dispensing device for dispensing at least two flowable substances includes a container with two separate coaxial compartments for containing two flowable substances, respectively. Independently operable dosing units are associated with each compartment. Each dosing unit communicates with its associated compartment through a valve flap. Each dosing unit also includes a spring-actuated plunger guided in a cylinder, with a valving mechanism for enabling a predetermined quantity of the associated flowable substance to be selectively dispensed.
    Type: Grant
    Filed: January 3, 1990
    Date of Patent: August 21, 1990
    Assignee: Henkel Kommanditgesellschaft auf Aktien
    Inventors: Juergen Fiedler, Albert Stoeffler