Patents by Inventor Akihisa Shimomura

Akihisa Shimomura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7547593
    Abstract: The objective of the invention is to provide a method of fabricating semiconductor device using a laser crystallization method capable of preventing a grain boundary from being formed on the channel-forming region of a TFT and preventing the mobility of the TFT from extremely deteriorating, on-current from decreasing, or off-current from increasing due to a grain boundary and a semiconductor device fabricated by the fabrication method. Striped (banded) or rectangular concave and convex portions are formed. Then, a semiconductor film formed on an insulating film is irradiated with a laser beam diagonally to the longitudinal direction of concave and convex portions on the insulating film.
    Type: Grant
    Filed: February 9, 2007
    Date of Patent: June 16, 2009
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hidekazu Miyairi, Atsuo Isobe, Tomoaki Moriwaka, Akihisa Shimomura
  • Publication number: 20090142904
    Abstract: A second single crystal semiconductor film is formed over a first single crystal semiconductor film; a separation layer is formed by addition of ions into the second single crystal semiconductor film; a second insulating film functioning as a bonding layer is formed over the second single crystal semiconductor film; a surface of a first SOI substrate and a surface of a second substrate are made to face each other, so that a surface of the second insulating film and the surface of the second substrate are bonded to each other; and then heat treatment is performed to cause cleavage at the separation layer, so that a second SOI substrate in which a part of the second single crystal semiconductor film is provided over the second substrate with the second insulating film interposed therebetween is formed.
    Type: Application
    Filed: November 25, 2008
    Publication date: June 4, 2009
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Fumito Isaka, Sho Kato, Ryu Komatsu, Kosei Nei, Akihisa Shimomura
  • Publication number: 20090142908
    Abstract: A photoelectric conversion device having an excellent photoelectric conversion characteristic is provided while effectively utilizing limited resources. A fragile layer is formed in a region at a depth of less than 1000 nm from one surface of a single crystal semiconductor substrate, and a first impurity semiconductor layer, a first electrode, and an insulating layer are formed on the one surface side of the single crystal semiconductor substrate. After bonding the insulating layer to a supporting substrate, the single crystal semiconductor substrate is separated with the fragile layer or its vicinity used as a separation plane, thereby forming a first single crystal semiconductor layer over the supporting substrate.
    Type: Application
    Filed: November 26, 2008
    Publication date: June 4, 2009
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Fumito Isaka, Sho Kato, Kosei Nei, Ryu Komatsu, Akihisa Shimomura, Koji Dairiki
  • Publication number: 20090137095
    Abstract: An object is to provide a uniform semiconductor substrate in which defective bonding is reduced. A further object is to manufacture the semiconductor substrate with a high yield. A first substrate and a second substrate are bonded in a reduced-pressure atmosphere by placing the first substrate at a certain region surrounded by an airtight holding mechanism provided over a support to surround the certain region of a surface of the support; placing the second substrate so as to come to be in contact with the airtight holding mechanism to ensure airtightness of a space surrounded by the support, the airtight holding mechanism, and the second substrate; evacuating the space whose airtightness is secured, thereby reducing an pressure in the space; disposing the second substrate in close contact with the first substrate using difference between the pressure in the space and outside atmpspheric pressure; and performing heat treatment.
    Type: Application
    Filed: November 21, 2008
    Publication date: May 28, 2009
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Akihisa SHIMOMURA, Masaki KOYAMA, Satohiro OKAMOTO
  • Patent number: 7538350
    Abstract: It is a problem to provide a semiconductor device production system using a laser crystallization method capable of preventing grain boundaries from forming in a TFT channel region and further preventing conspicuous lowering in TFT mobility due to grain boundaries, on-current decrease or off-current increase. An insulation film is formed on a substrate, and a semiconductor film is formed on the insulation film. Due to this, preferentially formed is a region in the semiconductor film to be concentratedly applied by stress during crystallization with laser light. Specifically, a stripe-formed or rectangular concavo-convex is formed on the semiconductor film. Continuous-oscillation laser light is irradiated along the striped concavo-convex or along a direction of a longer or shorter axis of rectangle.
    Type: Grant
    Filed: January 29, 2007
    Date of Patent: May 26, 2009
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Atsuo Isobe, Koji Dairiki, Hiroshi Shibata, Chiho Kokubo, Tatsuya Arao, Masahiko Hayakawa, Hidekazu Miyairi, Akihisa Shimomura, Koichiro Tanaka, Shunpei Yamazaki, Mai Akiba
  • Patent number: 7534705
    Abstract: An impurity of one conductivity type is ionized and accelerated by electric field before being implanted into a semiconductor layer to form a high concentration impurity region near its surface. Then the semiconductor layer is irradiated with continuous wave laser light for melting and crystallization or recrystallization, through which a region where the concentration of the impurity is constant is formed in the semiconductor layer. The continuous wave laser light irradiation may bring the semiconductor layer to the crystalline phase from the amorphous phase as long as the impurity element is re-distributed. The impurity is segregated through this process to newly create a high concentration region. However, this region is removed and no problem arises.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: May 19, 2009
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Akihisa Shimomura, Osamu Nakamura, Tatsuya Arao, Hidekazu Miyairi, Atsuo Isobe, Tamae Takano, Kouki Inoue
  • Publication number: 20090115029
    Abstract: A semiconductor substrate is irradiated with accelerated hydrogen ions, thereby forming a damaged region including a large amount of hydrogen. After a single crystal semiconductor substrate and a supporting substrate are bonded to each other, the semiconductor substrate is heated, so that the single crystal semiconductor substrate is separated in the damaged region. A single crystal semiconductor layer which is separated from the single crystal semiconductor substrate is irradiated with a laser beam. The single crystal semiconductor layer is melted by laser beam irradiation, whereby the single crystal semiconductor layer is recrystallized to recover its crystallinity and to planarized a surface of the single crystal semiconductor layer.
    Type: Application
    Filed: October 16, 2008
    Publication date: May 7, 2009
    Applicant: Semiconductor Energy Laboratory Co., ltd.
    Inventors: Masaki Koyama, Fumito Isaka, Akihisa Shimomura, Junpei Momo
  • Publication number: 20090117692
    Abstract: A single crystal semiconductor substrate bonded over a supporting substrate with a buffer layer interposed therebetween and having a separation layer is heated to separate the single crystal semiconductor substrate using the separation layer or a region near the separation layer as a separation plane, thereby forming a single crystal semiconductor layer over the supporting substrate. The single crystal semiconductor layer is irradiated with a laser beam to re-single-crystallize the single crystal semiconductor layer through melting. An impurity element is selectively added into the single crystal semiconductor layer to form a pair of impurity regions and a channel formation region between the pair of impurity regions. The single crystal semiconductor layer is heated at temperature which is equal to or higher than 400° C. and equal to or lower than a strain point of the supporting substrate and which does not cause melting of the single crystal semiconductor layer.
    Type: Application
    Filed: October 30, 2008
    Publication date: May 7, 2009
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Masaki Koyama, Fumito Isaka, Akihisa Shimomura, Junpei Momo, Shunpei Yamazaki
  • Publication number: 20090115028
    Abstract: A semiconductor substrate including a single crystal semiconductor layer with a buffer layer interposed therebetween is manufactured. A semiconductor substrate is doped with hydrogen to form a damaged layer containing a large amount of hydrogen. After the single crystal semiconductor substrate and a supporting substrate are bonded, the semiconductor substrate is heated so that the single crystal semiconductor substrate is separated along a separation plane. The single crystal semiconductor layer is irradiated with a laser beam from the single crystal semiconductor layer side to melt a region in the depth direction from the surface of the laser-irradiated region of the single crystal semiconductor layer. Recrystallization progresses based on the plane orientation of the single crystal semiconductor layer which is solid without being melted; therefore, crystallinity of the single crystal semiconductor layer is recovered and the surface of the single crystal semiconductor layer is planarized.
    Type: Application
    Filed: October 7, 2008
    Publication date: May 7, 2009
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Akihisa SHIMOMURA, Fumito ISAKA, Yoji NAGANO, Junpei MOMO
  • Publication number: 20090117716
    Abstract: To provide a high-performance semiconductor device using an SOI substrate in which a substrate having low heat resistance is used as a base substrate, to provide a high-performance semiconductor device without performing mechanical polishing, and to provide an electronic device using the semiconductor device, planarity of a semiconductor layer is improved and defects in the semiconductor layer are reduced by laser beam irradiation. Accordingly, a high-performance semiconductor device can be provided without performing mechanical polishing. In addition, a semiconductor device is manufactured using a region having the most excellent characteristics in a region irradiated with the laser beam. Specifically, instead of the semiconductor layer in a region which is irradiated with the edge portion of the laser beam, the semiconductor layer in a region which is irradiated with portions of the laser beam except the edge portion is used as a semiconductor element.
    Type: Application
    Filed: October 27, 2008
    Publication date: May 7, 2009
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Akihisa SHIMOMURA, Junpei Momo, Fumito Isaka
  • Publication number: 20090117707
    Abstract: An object is to provide a method for manufacturing an SOI substrate provided with a single crystal semiconductor layer which can be used practically even when a substrate having a low heat resistant temperature, such as a glass substrate or the like, is used. Another object is to manufacture a highly reliable semiconductor device using such an SOI substrate. An SOI substrate having a single crystal semiconductor layer which is transferred from a single crystal semiconductor substrate to a supporting substrate, and an entire region of which is melted by laser light irradiation to cause re-single-crystallization is used. Accordingly, the single crystal semiconductor layer has reduced crystal defects, high crystallinity and high planarity.
    Type: Application
    Filed: October 29, 2008
    Publication date: May 7, 2009
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Akihisa Shimomura, Junpei Momo
  • Publication number: 20090111248
    Abstract: A damaged region is formed by generation of plasma by excitation of a source gas, and by addition of ion species contained in the plasma from one of surfaces of a single crystal semiconductor substrate; an insulating layer is formed over the other surface of the single crystal semiconductor substrate; a supporting substrate is firmly attached to the single crystal semiconductor substrate so as to face the single crystal semiconductor substrate with the insulating layer interposed therebetween; separation is performed at the damaged region into the supporting substrate to which a single crystal semiconductor layer is attached and part of the single crystal semiconductor substrate by heating of the single crystal semiconductor substrate; dry etching is performed on a surface of the single crystal semiconductor layer attached to the supporting substrate; the single crystal semiconductor layer is recrystallized by irradiation of the single crystal semiconductor layer with a laser beam to melt at least part of the
    Type: Application
    Filed: October 8, 2008
    Publication date: April 30, 2009
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Hideto OHNUMA, Tetsuya KAKEHATA, Akihisa SHIMOMURA, Shinya SASAGAWA, Motomu KURATA
  • Publication number: 20090111244
    Abstract: A single crystal semiconductor substrate is irradiated with ions that are generated by exciting a hydrogen gas and are accelerated with an ion doping apparatus, thereby forming a damaged region that contains a large amount of hydrogen. After the single crystal semiconductor substrate and a supporting substrate are bonded, the single crystal semiconductor substrate is heated to be separated along the damaged region. While a single crystal semiconductor layer separated from the single crystal semiconductor substrate is heated, this single crystal semiconductor layer is irradiated with a laser beam. The single crystal semiconductor layer undergoes re-single-crystallization by being melted through laser beam irradiation, thereby recovering its crystallinity and planarizing the surface of the single crystal semiconductor layer.
    Type: Application
    Filed: October 7, 2008
    Publication date: April 30, 2009
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei YAMAZAKI, Junpei MOMO, Fumito ISAKA, Eiji HIGA, Masaki KOYAMA, Akihisa SHIMOMURA
  • Patent number: 7510920
    Abstract: Position control of a crystal grain in accordance with an arrangement of a TFT is achieved, and at the same time, a processing speed during a crystallization process is increased. More specifically, there is provided a manufacturing method for a semiconductor device, in which crystal having a large grain size can be continuously formed through super lateral growth that is artificially controlled and substrate processing efficiency during a laser crystallization process can be increased. In the manufacturing method for a semiconductor device, instead of performing laser irradiation on an entire semiconductor film within a substrate surface, a marker as a reference for positioning is formed so as to crystallize at least an indispensable portion at minimum. Thus, a time period required for laser crystallization can be reduced to make it possible to increase a processing speed for a substrate.
    Type: Grant
    Filed: November 23, 2005
    Date of Patent: March 31, 2009
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Akihisa Shimomura, Hisashi Ohtani, Masaaki Hiroki, Koichiro Tanaka, Aiko Shiga, Mai Akiba, Kenji Kasahara
  • Publication number: 20090072343
    Abstract: A high-performance semiconductor device using an SOI substrate in which a low-heat-resistance substrate is used as a base substrate. Further, a high-performance semiconductor device formed without using chemical polishing. Further, an electronic device using the semiconductor device. An insulating layer over an insulating substrate, a bonding layer over the insulating layer, and a single-crystal semiconductor layer over the bonding layer are included, and the arithmetic-mean roughness of roughness in an upper surface of the single-crystal semiconductor layer is greater than or equal to 1 nm and less than or equal to 7 nm. Alternatively, the root-mean-square roughness of the roughness may be greater than or equal to 1 nm and less than or equal to 10 nm. Alternatively, a maximum difference in height of the roughness may be greater than or equal to 5 nm and less than or equal to 250 nm.
    Type: Application
    Filed: September 10, 2008
    Publication date: March 19, 2009
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Hideto OHNUMA, Yoichi IIKUBO, Yoshiaki YAMAMOTO, Kenichiro MAKINO, Akihisa SHIMOMURA, Eiji HIGA, Tatsuya MIZOI, Yoji NAGANO, Fumito ISAKA, Tetsuya KAKEHATA, Shunpei YAMAZAKI
  • Patent number: 7505487
    Abstract: To provide a laser oscillator that has an oscillation wavelength in a visible region, and can enhance a conversion efficiency of photon output, and further suppress power consumption. The laser oscillator comprises a light emitting element formed on a substrate, and an optical resonator. The light emitting element includes a luminescent layer, an anode and a cathode, in which the luminescent layer is interposed between the anode and the cathode. The luminescent layer comprises a host material and a phosphorescent material, which is dispersed into the host material at a concentration of not smaller than 10 wt %. The anode and the cathode comprises a light transmitting property. In luminescence from the excimer state of the phosphorescent material, unidirectional light that intersects with the luminescent layer is amplified by the optical resonator.
    Type: Grant
    Filed: April 12, 2004
    Date of Patent: March 17, 2009
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hiroko Abe, Akihisa Shimomura, Satoshi Seo, Shunpei Yamazaki
  • Patent number: 7502392
    Abstract: The present invention provides a laser oscillator using an electroluminescent material that can enhance directivity of emitted laser light and resistance to a physical impact. The laser oscillator has a first layer including a concave portion, a second layer formed over the first layer to cover the concave portion, and a light emitting element formed over the second layer to overlap the concave portion, wherein the second layer is planarized, an axis of laser light obtained from the light emitting element intersects with a planarized surface of the second layer, the first layer has a curved surface in the concave portion, and a refractive index of the first layer is lower than that of the second layer.
    Type: Grant
    Filed: September 8, 2004
    Date of Patent: March 10, 2009
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Ryoji Nomura, Akihisa Shimomura
  • Publication number: 20090016393
    Abstract: It is an object to provide a laser apparatus, a laser irradiating method and a manufacturing method of a semiconductor device that make laser energy more stable. To attain the object, a part of laser beam emitted from an oscillator is sampled to generate an electric signal that contains as data energy fluctuation of a laser beam. The electric signal is subjected to signal processing to calculate the frequency, amplitude, and phase of the energy fluctuation of the laser beam.
    Type: Application
    Filed: December 18, 2007
    Publication date: January 15, 2009
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hidekazu Miyairi, Akihisa Shimomura, Tamae Takano, Masaki Koyama, Koichiro Tanaka
  • Publication number: 20090017598
    Abstract: To provide a method of manufacturing a semiconductor device in which the space between semiconductor films transferred at plural locations is narrowed. A first bonding substrate having first projections is attached to a base substrate. Then, the first bonding substrate is separated at the first projections so that first semiconductor films are formed over the base substrate. Next, a second bonding substrate having second projections is attached to the base substrate so that the second projections are placed in regions different from regions where the first semiconductor films are formed. Subsequently, the second bonding substrate is separated at the second projections so that second semiconductor films are formed over the base substrate. In the second bonding substrate, the width of each second projection in a direction (a depth direction) perpendicular to the second bonding substrate is larger than the film thickness of each first semiconductor film formed first.
    Type: Application
    Filed: July 8, 2008
    Publication date: January 15, 2009
    Inventors: Akihisa Shimomura, Tatsuya Mizoi, Hidekazu Miyairi, Koichiro Tanaka
  • Publication number: 20090011575
    Abstract: It is object to provide a manufacturing method of an SOI substrate provided with a single-crystal semiconductor layer, even in the case where a substrate having a low allowable temperature limit, such as a glass substrate, is used and to manufacture a high-performance semiconductor device using such an SOI substrate. Light irradiation is performed on a semiconductor layer which is separated from a semiconductor substrate and bonded to a support substrate having an insulating surface, using light having a wavelength of 365 nm or more and 700 nm or less, and a film thickness d (nm) of the semiconductor layer which is irradiated with the light is made to satisfy d=?/2n×m±? (nm), when a light wavelength is ? (nm), a refractive index of the semiconductor layer is n, m is a natural number greater than or equal to 1 (m=1, 2, 3, 4, . . . ), and 0???10 is satisfied.
    Type: Application
    Filed: June 17, 2008
    Publication date: January 8, 2009
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Akihisa Shimomura, Hideto Ohnuma, Tetsuya Kakehata, Kenichiro Makino