Patents by Inventor Akihisa Shimomura

Akihisa Shimomura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190341495
    Abstract: To provide a transistor having a high on-state current. A semiconductor device includes a first insulator containing excess oxygen, a first oxide semiconductor over the first insulator, a second oxide semiconductor over the first oxide semiconductor, a first conductor and a second conductor which are over the second oxide semiconductor and are separated from each other, a third oxide semiconductor in contact with side surfaces of the first oxide semiconductor, a top surface and side surfaces of the second oxide semiconductor, a top surface of the first conductor, and a top surface of the second conductor, a second insulator over the third oxide semiconductor, and a third conductor facing a top surface and side surfaces of the second oxide semiconductor with the second insulator and the third oxide semiconductor therebetween. The first oxide semiconductor has a higher oxygen-transmitting property than the third oxide semiconductor.
    Type: Application
    Filed: July 17, 2019
    Publication date: November 7, 2019
    Inventors: Shunpei YAMAZAKI, Akihisa SHIMOMURA, Yuhei SATO, Yasumasa YAMANE, Yoshitaka YAMAMOTO, Hideomi SUZAWA, Tetsuhiro TANAKA, Yutaka OKAZAKI, Naoki OKUNO, Takahisa ISHIYAMA
  • Publication number: 20190341404
    Abstract: A semiconductor device production system using a laser crystallization method is provided which can avoid forming grain boundaries in a channel formation region of a TFT, thereby preventing grain boundaries from lowering the mobility of the TFT greatly, from lowering ON current, and from increasing OFF current. Rectangular or stripe pattern depression and projection portions are formed on an insulating film. A semiconductor film is formed on the insulating film. The semiconductor film is irradiated with continuous wave laser light by running the laser light along the stripe pattern depression and projection portions of the insulating film or along the major or minor axis direction of the rectangle. Although continuous wave laser light is most preferred among laser light, it is also possible to use pulse oscillation laser light in irradiating the semiconductor film.
    Type: Application
    Filed: July 18, 2019
    Publication date: November 7, 2019
    Inventors: Atsuo ISOBE, Shunpei YAMAZAKI, Koji DAIRIKI, Hiroshi SHIBATA, Chiho KOKUBO, Tatsuya ARAO, Masahiko HAYAKAWA, Hidekazu MIYAIRI, Akihisa SHIMOMURA, Koichiro TANAKA, Mai AKIBA
  • Patent number: 10439068
    Abstract: To provide a novel oxide semiconductor film. The oxide semiconductor film includes In, M, and Zn. The M is Al, Ga, Y, or Sn. In the case where the proportion of In in the oxide semiconductor film is 4, the proportion of M is greater than or equal to 1.5 and less than or equal to 2.5 and the proportion of Zn is greater than or equal to 2 and less than or equal to 4.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: October 8, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Akihisa Shimomura, Junichi Koezuka, Kenichi Okazaki, Yasumasa Yamane, Yuhei Sato, Shunpei Yamazaki
  • Patent number: 10424671
    Abstract: A novel semiconductor device or memory device is provided. Alternatively, a semiconductor device or memory device in which storage capacity per unit area is large is provided. The semiconductor device includes a sense amplifier provided to a semiconductor substrate and a memory cell provided over the sense amplifier. The sense amplifier includes a first transistor. The memory cell includes a capacitor over the semiconductor substrate, a second transistor provided over the capacitor, a conductor, and a groove portion. The capacitor includes a first electrode and a second electrode. The first electrode is formed along the groove portion. The second electrode has a region facing the first electrode in the groove portion. The second transistor includes an oxide semiconductor. One of a source and a drain of the second transistor is electrically connected to the second electrode through the conductor.
    Type: Grant
    Filed: July 27, 2016
    Date of Patent: September 24, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Kiyoshi Kato, Hidekazu Miyairi, Akihisa Shimomura, Atsushi Hirose
  • Patent number: 10388520
    Abstract: A method of forming an oxide semiconductor includes a step of depositing an oxide semiconductor layer over a substrate by using a sputtering apparatus in which in a target containing indium, an element M (aluminum, gallium, yttrium, or tin), zinc, and oxygen, the substrate which faces a surface of the target, and a magnet unit comprising a first magnet and a second magnet on a rear surface side of the target are provided. In the method, deposition is performed under a condition that a maximum intensity of a horizontal magnetic field is greater than or equal to 350 G and less than or equal to 2000 G in a plane where a vertical distance toward the substrate from a surface of the magnet unit is 10 mm.
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: August 20, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Akihisa Shimomura, Yuhei Sato, Yasumasa Yamane, Yoshinori Yamada, Tetsunori Maruyama
  • Patent number: 10374097
    Abstract: To provide a transistor having a high on-state current. A semiconductor device includes a first insulator containing excess oxygen, a first oxide semiconductor over the first insulator, a second oxide semiconductor over the first oxide semiconductor, a first conductor and a second conductor which are over the second oxide semiconductor and are separated from each other, a third oxide semiconductor in contact with side surfaces of the first oxide semiconductor, a top surface and side surfaces of the second oxide semiconductor, a top surface of the first conductor, and a top surface of the second conductor, a second insulator over the third oxide semiconductor, and a third conductor facing a top surface and side surfaces of the second oxide semiconductor with the second insulator and the third oxide semiconductor therebetween. The first oxide semiconductor has a higher oxygen-transmitting property than the third oxide semiconductor.
    Type: Grant
    Filed: January 9, 2018
    Date of Patent: August 6, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Akihisa Shimomura, Yuhei Sato, Yasumasa Yamane, Yoshitaka Yamamoto, Hideomi Suzawa, Tetsuhiro Tanaka, Yutaka Okazaki, Naoki Okuno, Takahisa Ishiyama
  • Patent number: 10366885
    Abstract: The present invention is characterized in that by laser beam being slantly incident to the convex lens, an aberration such as astigmatism or the like is occurred, and the shape of the laser beam is made linear on the irradiation surface or in its neighborhood. Since the present invention has a very simple configuration, the optical adjustment is easier, and the device becomes compact in size. Furthermore, since the beam is slantly incident with respect to the irradiated body, the return beam can be prevented.
    Type: Grant
    Filed: November 14, 2016
    Date of Patent: July 30, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Koichiro Tanaka, Hidekazu Miyairi, Aiko Shiga, Akihisa Shimomura, Atsuo Isobe
  • Patent number: 10361222
    Abstract: A semiconductor device production system using a laser crystallization method is provided which can avoid forming grain boundaries in a channel formulation region of a TFT, thereby preventing grain boundaries from lowering the mobility of the TFT greatly, from lowering ON current, and from increasing OFF current. Rectangular or stripe pattern depression and projection portions are formed on an insulating film. A semiconductor film is formed on the insulating film. The semiconductor film is irradiated with continuous wave laser light by running the laser light along the stripe pattern depression and projection portions of the insulating film or along the major or minor axis direction of the rectangle. Although continuous wave laser light is most preferred among laser light, it is also possible to use pulse oscillation laser light in irradiating the semiconductor film.
    Type: Grant
    Filed: February 15, 2018
    Date of Patent: July 23, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Atsuo Isobe, Shunpei Yamazaki, Koji Dairiki, Hiroshi Shibata, Chiho Kokubo, Tatsuya Arao, Masahiko Hayakawa, Hidekazu Miyairi, Akihisa Shimomura, Koichiro Tanaka, Mai Akiba
  • Publication number: 20190221674
    Abstract: A transistor with favorable electrical characteristics is provided. One embodiment of the present invention is a semiconductor device including a semiconductor, a first insulator in contact with the semiconductor, a first conductor in contact with the first insulator and overlapping with the semiconductor with the first insulator positioned between the semiconductor and the first conductor, and a second conductor and a third conductor, which are in contact with the semiconductor. One or more of the first to third conductors include a region containing tungsten and one or more elements selected from silicon, carbon, germanium, tin, aluminum, and nickel.
    Type: Application
    Filed: March 28, 2019
    Publication date: July 18, 2019
    Inventors: Yutaka OKAZAKI, Akihisa SHIMOMURA, Naoto YAMADE, Tomoya TAKESHITA, Tetsuhiro TANAKA
  • Patent number: 10290745
    Abstract: A transistor with stable electrical characteristics is provided. The transistor includes a first insulator over a substrate; first to third oxide insulators over the first insulator; a second insulator over the third oxide insulator; a first conductor over the second insulator; and a third insulator over the first conductor. An energy level of a conduction band minimum of each of the first and second oxide insulators is closer to a vacuum level than that of the oxide semiconductor is. An energy level of a conduction band minimum of the third oxide insulator is closer to the vacuum level than that of the second oxide insulator is. The first insulator contains oxygen. The number of oxygen molecules released from the first insulator measured by thermal desorption spectroscopy is greater than or equal to 1E14 molecules/cm2 and less than or equal to 1E16 molecules/cm2.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: May 14, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Tetsuhiro Tanaka, Akihisa Shimomura, Yasumasa Yamane, Ryo Tokumaru, Yuhei Sato, Kazuhiro Tsutsui
  • Patent number: 10276724
    Abstract: A transistor with favorable electrical characteristics is provided. One embodiment of the present invention is a semiconductor device including a semiconductor, a first insulator in contact with the semiconductor, a first conductor in contact with the first insulator and overlapping with the semiconductor with the first insulator positioned between the semiconductor and the first conductor, and a second conductor and a third conductor, which are in contact with the semiconductor. One or more of the first to third conductors include a region containing tungsten and one or more elements selected from silicon, carbon, germanium, tin, aluminum, and nickel.
    Type: Grant
    Filed: July 7, 2016
    Date of Patent: April 30, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yutaka Okazaki, Akihisa Shimomura, Naoto Yamade, Tomoya Takeshita, Tetsuhiro Tanaka
  • Publication number: 20190123208
    Abstract: A highly reliable semiconductor device including an oxide semiconductor is provided. Oxygen is supplied from a base insulating layer provided below an oxide semiconductor layer to a channel formation region, whereby oxygen vacancies which might be generated in the channel formation region are filled. Further, a protective insulating layer containing a small amount of hydrogen and functioning as a barrier layer having a low permeability to oxygen is formed over the gate electrode layer so as to cover side surfaces of an oxide layer and a gate insulating layer that are provided over the oxide semiconductor layer, whereby release of oxygen from the gate insulating layer and/or the oxide layer is prevented and generation of oxygen vacancies in a channel formation region is prevented.
    Type: Application
    Filed: December 18, 2018
    Publication date: April 25, 2019
    Inventors: Sachiaki TEZUKA, Hideomi Suzawa, Akihisa Shimomura, Tetsuhiro Tanaka
  • Patent number: 10217870
    Abstract: A highly reliable semiconductor device including an oxide semiconductor is provided. Oxygen is supplied from a base insulating layer provided below an oxide semiconductor layer to a channel formation region, whereby oxygen vacancies which might be generated in the channel formation region are filled. Further, a protective insulating layer containing a small amount of hydrogen and functioning as a barrier layer having a low permeability to oxygen is formed over the gate electrode layer so as to cover side surfaces of an oxide layer and a gate insulating layer that are provided over the oxide semiconductor layer, whereby release of oxygen from the gate insulating layer and/or the oxide layer is prevented and generation of oxygen vacancies in a channel formation region is prevented.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: February 26, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Sachiaki Tezuka, Hideomi Suzawa, Akihisa Shimomura, Tetsuhiro Tanaka
  • Patent number: 10164120
    Abstract: A transistor including a semiconductor, a first conductor, a second conductor, a third conductor, a first insulator, and a second insulator is manufactured by forming a hard mask layer including a fourth conductor over the second insulator, a third insulator over the fourth conductor, forming an opening portion in the second insulator with the hard mask layer as the mask, eliminating the hard mask layer by forming the opening portion, and forming the first insulator and the first conductor in the opening portion.
    Type: Grant
    Filed: May 18, 2016
    Date of Patent: December 25, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Motomu Kurata, Shinya Sasagawa, Katsuaki Tochibayashi, Satoru Okamoto, Akihisa Shimomura
  • Publication number: 20180350997
    Abstract: A transistor with stable electrical characteristics. A semiconductor device includes a first insulator over a substrate, a second insulator over the first insulator, an oxide semiconductor in contact with at least part of a top surface of the second insulator, a third insulator in contact with at least part of a top surface of the oxide semiconductor, a first conductor and a second conductor electrically connected to the oxide semiconductor, a fourth insulator over the third insulator, a third conductor which is over the fourth insulator and at least part of which is between the first conductor and the second conductor, and a fifth insulator over the third conductor. The first insulator contains a halogen element.
    Type: Application
    Filed: July 25, 2018
    Publication date: December 6, 2018
    Inventors: Tetsuhiro TANAKA, Mitsuhiro ICHIJO, Toshiya ENDO, Akihisa SHIMOMURA, Yuji EGI, Sachiaki TEZUKA, Shunpei YAMAZAKI
  • Publication number: 20180342601
    Abstract: To provide a semiconductor device including an oxide semiconductor layer with high and stable electrical characteristics, the semiconductor device is manufactured by forming a first insulating layer, forming oxide over the first insulating layer and then removing the oxide n times (n is a natural number), forming an oxide semiconductor layer over the first insulating layer, forming a second insulating layer over the oxide semiconductor layer, and forming a conductive layer over the second insulating layer. Alternatively, the semiconductor device is manufactured by forming the oxide semiconductor layer over the first insulating layer, forming the second insulating layer over the oxide semiconductor layer, forming the oxide over the second insulating layer and then removing the oxide n times (n is a natural number), and forming the conductive layer over the second insulating layer.
    Type: Application
    Filed: July 18, 2018
    Publication date: November 29, 2018
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Tetsuhiro Tanaka, Ryo Tokumaru, Yasumasa Yamane, Akihisa Shimomura, Naoki Okuno
  • Patent number: 10056497
    Abstract: A transistor with stable electrical characteristics. A semiconductor device includes a first insulator over a substrate, a second insulator over the first insulator, an oxide semiconductor in contact with at least part of a top surface of the second insulator, a third insulator in contact with at least part of a top surface of the oxide semiconductor, a first conductor and a second conductor electrically connected to the oxide semiconductor, a fourth insulator over the third insulator, a third conductor which is over the fourth insulator and at least part of which is between the first conductor and the second conductor, and a fifth insulator over the third conductor. The first insulator contains a halogen element.
    Type: Grant
    Filed: April 7, 2016
    Date of Patent: August 21, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Tetsuhiro Tanaka, Mitsuhiro Ichijo, Toshiya Endo, Akihisa Shimomura, Yuji Egi, Sachiaki Tezuka, Shunpei Yamazaki
  • Patent number: 10050132
    Abstract: A change in electrical characteristics is suppressed and reliability in a semiconductor device using a transistor including an oxide semiconductor is improved. One feature resides in forming an oxide semiconductor film over an oxygen-introduced insulating film, and then forming the source and drain electrodes with an antioxidant film thereunder. Here, in the antioxidant film, the width of a region overlapping with the source and drain electrodes is longer than the width of a region not overlapping with them. The transistor formed as such has less defects in the channel region, which will improve reliability of the semiconductor device.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: August 14, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Akihisa Shimomura, Yasumasa Yamane, Yuhei Sato, Tetsuhiro Tanaka, Masashi Tsubuku, Toshihiko Takeuchi, Ryo Tokumaru, Mitsuhiro Ichijo, Satoshi Toriumi, Takashi Ohtsuki, Toshiya Endo
  • Patent number: 10043913
    Abstract: A semiconductor device with favorable electrical characteristics is provided. In an oxide semiconductor film, a plurality of electron diffraction patterns are observed in such a manner that a surface over which the oxide semiconductor film is formed is irradiated with an electron beam having a probe diameter whose half-width is 1 nm while the position of the film and the position of the electron beam are relatively moved. The electron diffraction patterns include 50 or more electron diffraction patterns observed in different areas. The sum of the percentage of first electron diffraction patterns and the percentage of second electron diffraction patterns accounts for 100%. The first electron diffraction patterns account for 50% or more. The first electron diffraction pattern includes observation points that are not symmetry or observation points disposed in a circular pattern. The second electron diffraction pattern includes observation points corresponding to the vertices of a hexagon.
    Type: Grant
    Filed: March 17, 2015
    Date of Patent: August 7, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Akihisa Shimomura, Yuhei Sato, Yasumasa Yamane, Shunpei Yamazaki, Kenichi Okazaki, Chiho Kawanabe
  • Patent number: 10032888
    Abstract: To provide a semiconductor device including an oxide semiconductor layer with high and stable electrical characteristics, the semiconductor device is manufactured by forming a first insulating layer, forming oxide over the first insulating layer and then removing the oxide n times (n is a natural number), forming an oxide semiconductor layer over the first insulating layer, forming a second insulating layer over the oxide semiconductor layer, and forming a conductive layer over the second insulating layer. Alternatively, the semiconductor device is manufactured by forming the oxide semiconductor layer over the first insulating layer, forming the second insulating layer over the oxide semiconductor layer, forming the oxide over the second insulating layer and then removing the oxide n times (n is a natural number), and forming the conductive layer over the second insulating layer.
    Type: Grant
    Filed: August 18, 2015
    Date of Patent: July 24, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Tetsuhiro Tanaka, Ryo Tokumaru, Yasumasa Yamane, Akihisa Shimomura, Naoki Okuno