Patents by Inventor Akinobu Matsuyama

Akinobu Matsuyama has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5413922
    Abstract: An optically active 1,3-butanediol can be produced by either (1) treating a mixture of 1,3-butanediol enantiomers with a microorganism, which has been optionally treated, capable of asymmetrically assimilating said mixture, or (2) preparing a microorganism, which has been optionally treated, capable of asymmetrically reducing 4-hydroxy-2-butanone, and collecting optically active 1,3-butanediol.
    Type: Grant
    Filed: April 30, 1993
    Date of Patent: May 9, 1995
    Assignee: Daicel Chemical Industries, Ltd.
    Inventors: Akinobu Matsuyama, Teruyuki Nikaido, Yoshinori Kobayashi
  • Patent number: 5401660
    Abstract: An optically active 1,3-butanediol can be produced by either (1) treating a mixture of 1,3-butanediol enantiomers with a microorganism, which has been optionally treated, capable of asymmetrically assimilating said mixture, or (2) preparing a microorganism, which has been optionally treated, capable of asymmetrically reducing 4-hydroxy-2-butanone, and collecting optically active 1,3-butanediol.
    Type: Grant
    Filed: October 21, 1992
    Date of Patent: March 28, 1995
    Assignee: Daicel Chemical Industries, Ltd.
    Inventors: Akinobu Matsuyama, Teruyuki Nikaido, Yoshinori Kobayashi
  • Patent number: 5371014
    Abstract: An optically active 2-hydroxy acid derivative is produced by treating a 2-oxo acid derivative with a microorganism, which has been optionally treated, capable of asymmetrically reducing said 2-oxo acid derivative into an optically active (R)- or (S)-2-hydroxy acid derivative represented by the formula (II) and recovering the optically active (R)- or (S)-hydroxy acid derivative thus formed. Optically active 2-hydroxy acid derivatives are important intermediates in the synthesis of various drugs such as a remedy for hypertension.
    Type: Grant
    Filed: October 22, 1993
    Date of Patent: December 6, 1994
    Assignee: Daicel Chemical Industries, Ltd.
    Inventors: Akinobu Matsuyama, Teruyuki Nikaido, Yoshinori Kobayashi
  • Patent number: 5356812
    Abstract: A microorganism or a preparation thereof is permitted to act on a mixture of enantiomers of 3-phenyl-1, 3-propanediol, and the residual optically active 3-phenyl-1,3-propanediol is harvested.The genera of those microorganisms which are able to leave (R)-3-phenyl-1,3-propanediol include Candida, Hansenula, Rhodotorula, Protaminobacter, Aspergillus, Alternaria, Macrophomina, Preussia and Talaromyces.The genera of those microorganisms which are able to leave (S)-3-phenyl-1,3-propanediol include Candida, Geotrichum, Leucosporidium, Pichia, Torulaspora, Trichosporon, Escherichia, Micrococcus, Corynebacterium, Gordona, Rhodococcus, Aspergillus, Emericella, Absidia, Fusarium, Dactylium, Serratia and Pseudomonas.
    Type: Grant
    Filed: April 7, 1992
    Date of Patent: October 18, 1994
    Assignee: Daicel Chemical Industries, Ltd.
    Inventors: Akinobu Matsuyama, Michio Ito, Yoshinori Kobayashi, Naoki Kawada
  • Patent number: 5336619
    Abstract: Optically active 1,3-butanediol can be obtained by treating an enantiomorphic mixture of 1,3-butanediol with a microorganism or cells thereof which have been ground, acetone-treated, or lyophilized, capable of acting on an enantiomorphic mixture of 1,3-butanediol so as to leave (R)- or (S)-1,3-butanediol as such.Further, optically active 1,3-butanediol can be obtained by treating 4-hydroxy-2-butanone with a microorganism or cells thereof which have been ground, acetone-treated, or lyophilized, capable of asymmetrically reducing the 4-hydroxy-2-butanone into (R)- or (S)-1,3-butanediol.
    Type: Grant
    Filed: December 31, 1991
    Date of Patent: August 9, 1994
    Assignee: Daicel Chemical Industries, Ltd.
    Inventors: Akinobu Matsuyama, Yoshinori Kobayashi
  • Patent number: 5326705
    Abstract: Optically active 1,3-BUTANEDIOL is produced by contacting microorganisms selected from respective groups of specific genuses having an effect of acting on an enantiomeric mixture of 1,3-butanediols and leaving (R)-1,3-butanediol or (S)-1,3-butanediol in enantiomeric mixture, and collecting the remaining optically active (R)-1,3-butandiol or (S)-1,3-butanediol. Optically active 1,3-butanediol can be produced by an economically excellent and convenient means.
    Type: Grant
    Filed: December 10, 1992
    Date of Patent: July 5, 1994
    Assignee: Daicel Chemical Industries, Ltd.
    Inventors: Akinobu Matsuyama, Yoshinori Kobayashi
  • Patent number: 5288620
    Abstract: Optically active 2-hydroxy-4-phenyl-3-butenoic acid can be obtained by treating 2-oxo-4-phenyl-3-butenoic acid with an optionally treated microorganism capable of asymmetrically reducing the 2-oxo-4-phenyl-3-butenoic acid into (R)-2-hydroxy-4-phenyl-3-butenoic acid or (S)-2-hydroxy-4-phenyl-3-butenoic acid to thereby asymmetrically reduce the same into (R)-2-hydroxy-4-phenyl-3-butenoic acid or (S)-2-hydroxy-4-phenyl-3-butenoic acid.
    Type: Grant
    Filed: May 20, 1992
    Date of Patent: February 22, 1994
    Assignee: Daicel Chemical Industries, Ltd.
    Inventors: Akinobu Matsuyama, Ichiro Takase, Yoichiro Ueda, Yoshinori Kobayashi
  • Patent number: 5256552
    Abstract: 2-Oxo-4-phenylbutyric acid is treated with a microorganism, which has been optionally treated, capable of asymmetrically reducing 2-oxo-4-phenylbutyric acid into either (R)-2-hydroxy-4-phenylbutyric acid or (S)-2-hydroxy-4-phenylbutyric acid, and the (R)-2-hydroxy-4-phenylbutyric acid or (S)-2-hydroxy-4-phenylbutyric acid thus produced is recovered to thereby give optically active 2-hydroxy-4-phenylbutyric acid.The optically active 2-hydroxy-4-phenylbutyric acid is an important intermediate in the synthesis of various drugs such as a remedy for hypertension.
    Type: Grant
    Filed: July 17, 1992
    Date of Patent: October 26, 1993
    Assignee: Daicel Chemical Industries, Ltd.
    Inventors: Akinobu Matsuyama, Teruyuki Nikaido, Yoshinori Kobayashi
  • Patent number: 5219757
    Abstract: An optically active 1,3-butanediol can be produced by either (1) treating a mixture of 1,3-butanediol enantiomers with a microorganism, which has been optionally treated, capable of asymmetrically assimilating said mixture, or (2) preparing a microorganism, which has been optionally treated, capable of asymmetrically reducing 4-hydroxy-2-butanone, and collecting optically active 1,3-butanediol.
    Type: Grant
    Filed: December 7, 1989
    Date of Patent: June 15, 1993
    Assignee: Daicel Chemical Industries, Ltd.
    Inventors: Akinobu Matsuyama, Teruyuki Nikaido, Yoshinori Kobayashi
  • Patent number: 5194380
    Abstract: Optically active 2-hydroxy-4-phenyl-3-butenoic acid can be obtained by treating 2-oxo-4-phenyl-3-butenoic acid with an optionally treated microorganism capable of asymmetrically reducing the 2-oxo-4-phenyl-3-butenoic acid into (R)-2-hydroxy-4-phenyl-3-butenoic acid or (S)-2-hydroxy-4-phenyl-3-butenoic acid to thereby asymmetrically reduce the same into (R)-2-hydroxy-4-phenyl-3-butenoic acid or (S)-2-hydroxy-4-phenyl-3-butenoic acid.
    Type: Grant
    Filed: March 1, 1990
    Date of Patent: March 16, 1993
    Assignee: Daicel Chemical Industries, Ltd.
    Inventors: Akinobu Matsuyama, Ichiro Takase, Yoichiro Ueda, Yoshinori Kobayashi
  • Patent number: 5126248
    Abstract: Riboflavin is effectively obtained by culturing in a medium (1) a purine-requiring revertant derived from a riboflavin-producing yeast which belongs to the genus Saccharomyces and has a purine requirement or (2) a riboflavin-producing yeast which belongs to the genus Saccharomyces and is resistant to ammonium ion, and collecting the produced riboflavin.
    Type: Grant
    Filed: August 11, 1989
    Date of Patent: June 30, 1992
    Assignee: Daicel Chemical Industries, Ltd.
    Inventors: Akinobu Matsuyama, Kimitoshi Kawai, Sadao Kageyama, Shoichi Takao
  • Patent number: 4794081
    Abstract: Riboflavin is obtained directly from the culture in a high yield by cultivating a riboflavin-producing microorganism in a medium using a lower (C.sub.1 to C.sub.4) aliphatic compound, separating riboflavin contained in the culture in the form of heated aqueous solution from solid matters, and crystallizing riboflavin from the heated aqueous solution.Riboflavin is also prepared in a high yield by cultivating a riboflavin-producing yeast belonging to the genus Saccharomyces which has purine requirements and/or resistance to 3-amino-1,2,4-triazole in a medium and collecting riboflavin formed and accumulated in the medium.Moreover, riboflavin is prepared in a high yield even in the presence of iron ions by preliminarily cultivating in liquid a riboflavin-producing yeast belonging to the genus Saccharomyces and then cultivating it in a riboflavin-producing medium containing zinc ions.
    Type: Grant
    Filed: August 21, 1984
    Date of Patent: December 27, 1988
    Assignee: Daicel Chemical Industries, Ltd.
    Inventors: Kimitoshi Kawai, Akinobu Matsuyama, Shoichi Takao