Patents by Inventor Akinori Hashimura

Akinori Hashimura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8270066
    Abstract: A display device is provided for reflecting a black color, as enabled by an optical splitting photonic liquid crystal waveguide. Sets of top and bottom electrodes are formed in a periodic pattern. A first dielectric layer overlies the set of bottom electrodes, made from a liquid crystal (LC) material with molecules having dipoles responsive to an electric field. A plasmonic layer, including a plurality of discrete plasmonic particles, is interposed between the sets of top and bottom electrodes, and is in contact with the first dielectric layer. A voltage potential is applied between the top and bottom electrodes, generating an electric field. Dipole local orientation and non-orientation regions are created in the liquid crystal molecules in response to the electric field, and a wavelength of light outside the visible spectrum is reflected in response to optical spectrum splitting of the incident light.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: September 18, 2012
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Liang Tang, Akinori Hashimura, Apostolos T. Voutsas
  • Publication number: 20120200817
    Abstract: A method is provided for forming a reflective plasmonic display. The method provides a substrate and deposits a bottom dielectric layer. A conductive film is deposited overlying the bottom dielectric layer. A hard mask is formed with nano-size openings overlying the conductive film. The conductive film is plasma etched via nano-size openings in the hard mask, stopping at the dielectric layer. After removing the hard mask, a conductive film is left with nano-size openings to the dielectric layer. Metal is deposited in the nano-size openings, creating a pattern of metallic nanoparticles overlying the dielectric layer. Then, the conductive film is removed. The hard mask may be formed by conformally depositing an Al film overlying the conductive film and anodizing the Al film, creating a hard mask of porous anodized Al oxide (AAO) film. The porous AAO film may form a short-range hexagonal, and long-range random order hole patterns.
    Type: Application
    Filed: April 18, 2012
    Publication date: August 9, 2012
    Inventors: Douglas J. Tweet, Akinori Hashimura, Paul J. Schuele, Apostolos T. Voutsas
  • Patent number: 8223425
    Abstract: A plasmonic display device is provided that uses physical modulation mechanisms. The device is made from an electrically conductive bottom electrode and a first dielectric layer overlying the bottom electrode. The first dielectric layer is a piezoelectric material having an index of expansion responsive to an electric field. An electrically conductive top electrode overlies the first dielectric layer. A first plasmonic layer, including a plurality of discrete plasmonic particles, is interposed between the top and bottom electrodes and in contact with the first dielectric layer. In one aspect, the plasmonic particles are an expandable polymer material covered with a metal coating having a size responsive to an electric field.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: July 17, 2012
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Akinori Hashimura, Liang Tang, Apostolos T. Voutsas
  • Publication number: 20120139958
    Abstract: An electrical pressure-sensitive reflective display includes an array of display pixels, each with a transparent top surface, first electrode, second electrode, an elastic polymer medium, and metallic nanoparticles distributed in the elastic polymer medium. When a first voltage potential is applied between the first and second electrodes of each display pixel, a first color is reflected from the incident spectrum of light, assuming no pressure is applied on the top surface of each display pixel. When the top surface of a first display pixel is deformed in response to an applied pressure, the elastic polymer medium in the first display pixel is compressed, decreasing the metallic nanoparticle-to-metallic nanoparticle mean distance in the first display pixel. In response to decreasing the metallic nanoparticle-to-metallic nanoparticle mean distance, the color reflected from the incident spectrum of light by the second display pixel is changed from the first color to second color.
    Type: Application
    Filed: June 9, 2011
    Publication date: June 7, 2012
    Inventors: Liang Tang, Akinori Hashimura, Apostolos T. Voutsas
  • Patent number: 8045107
    Abstract: A color-tunable plasmonic device is provided with a partially modulated refractive index. A first dielectric layer overlies a bottom electrode, and has a refractive index non-responsive to an electric field. A second dielectric layer overlies the first dielectric layer, having a refractive index responsive to an electric field. An electrically conductive top electrode overlies the second dielectric layer. A plasmonic layer including a plurality of discrete plasmonic particles is interposed between the top and bottom electrodes. In one aspect, the plasmonic layer is interposed between the first and second dielectric layers. In a second aspect, the plasmonic layer is interposed between the first dielectric layer and the bottom electrode. In a third aspect, a first plasmonic layer is interposed between the first dielectric layer and the bottom electrode, and a second plasmonic layer of discrete plasmonic particles is interposed between the first dielectric layer and the second dielectric layer.
    Type: Grant
    Filed: November 6, 2009
    Date of Patent: October 25, 2011
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Liang Tang, Akinori Hashimura, Apostolos T. Voutsas
  • Patent number: 8026779
    Abstract: An object is to provide a resonator and a vibrator with a high Q value in which dissipation of vibration energy in vibration of the vibrator is small, and a thickness of a support part of the vibrator of a beam structure is made thicker than a thickness of the vibrator and the support part is formed in axisymmetry with respect to a length direction of a beam. By this configuration, brittleness of the support part is improved and loss of vibration energy from the support part is reduced and also loss of vibration energy resulting from surface roughness of a surface of the vibrator can be reduced, so that a resonator having a high Q value can be provided.
    Type: Grant
    Filed: June 14, 2007
    Date of Patent: September 27, 2011
    Assignee: Panasonic Corporation
    Inventors: Kunihiko Nakamura, Michiaki Matsuo, Yoshito Nakanishi, Akinori Hashimura
  • Patent number: 7999995
    Abstract: A full color range analog controlled interferometric modulation device is provided. The device includes a transparent substrate, and a transparent fixed-position electrically conductive electrode with a bottom surface overlying the substrate. A transparent spacer overlies the fixed-position electrode, and an induced absorber overlies the spacer. An optically reflective electrically conductive moveable membrane overlies the induced absorber. A cavity is formed between the induced absorber and the moveable membrane having a maximum air gap dimension less than the spacer thickness. In one aspect, the distance from the top surface of the fixed-position electrode to a cavity lower surface is at least twice as great as the cavity maximum air gap dimension. In another aspect, at least one anti-reflective coating (ARC) layer is interposed between the substrate and the fixed-position electrode, and at least one ARC layer is interposed between the fixed-position electrode and the spacer.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: August 16, 2011
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Akinori Hashimura, Douglas J. Tweet, Apostolos T. Voutsas
  • Publication number: 20110109659
    Abstract: A method is provided for color tuning a plasmonic device with a color tunable electronic skin. A plasmonic electronic skin is used, including a first substrate, a plasmonic structure, an electrically conductive transparent first electrode layer, an electrically conductive transparent second electrode layer, and a polymer-networked liquid crystal (PNLC) layer interposed between the first and second transparent electrode layers. In response to receiving a color tuning voltage, a full visible spectrum incident light, and a PNLC switch voltage, the plasmonic structure generates a first primary color. A primary color exhibits a single wavelength peak with a spectral full width at half magnitudes (FWHMs) in the visible spectrum of light. In response to receiving the PNLC switch voltage between the first and second electrode layers, the PNLC layer passes incident light.
    Type: Application
    Filed: July 14, 2010
    Publication date: May 12, 2011
    Inventors: Liang Tang, Akinori Hashimura, Apostolos T. Voutsas
  • Publication number: 20110109821
    Abstract: A plasmonic display device is provided with liquid crystal dipole molecule control. The device is made from a first set of electrodes including at least one electrically conductive top electrode and at least one electrically conductive bottom electrode capable of generating a first electric field in a first direction. A second set of electrodes, including an electrically conductive right electrode and an electrically conductive left electrode, is capable of generating a second electric field in a second first direction. A dielectric layer overlies the bottom electrode, made from a liquid crystal material with molecules having dipoles responsive to an electric field. A plasmonic layer, including a plurality of discrete plasmonic particles, is interposed between the first and second set of electrodes and in contact with the dielectric layer. In one aspect, the plasmonic layer is embedded in the dielectric layer.
    Type: Application
    Filed: December 10, 2009
    Publication date: May 12, 2011
    Inventors: Liang Tang, Akinori Hashimura, Jiandong Huang, Apostolos T. Voutsas
  • Publication number: 20110109870
    Abstract: A display device is provided for reflecting a black color, as enabled by an optical splitting photonic liquid crystal waveguide. Sets of top and bottom electrodes are formed in a periodic pattern. A first dielectric layer overlies the set of bottom electrodes, made from a liquid crystal (LC) material with molecules having dipoles responsive to an electric field. A plasmonic layer, including a plurality of discrete plasmonic particles, is interposed between the sets of top and bottom electrodes, and is in contact with the first dielectric layer. A voltage potential is applied between the top and bottom electrodes, generating an electric field. Dipole local orientation and non-orientation regions are created in the liquid crystal molecules in response to the electric field, and a wavelength of light outside the visible spectrum is reflected in response to optical spectrum splitting of the incident light.
    Type: Application
    Filed: August 31, 2010
    Publication date: May 12, 2011
    Inventors: Liang Tang, Akinori Hashimura, Apostolos T. Voutsas
  • Publication number: 20110109845
    Abstract: A plasmonic display device is provided having dual modulation mechanisms. The device has an electrically conductive bottom electrode that may be either transparent or reflective. A dielectric layer overlies the bottom electrode, made from an elastic polymer material having a refractive index responsive to an electric field. An electrically conductive top electrode, either transparent or reflective, overlies the dielectric layer. A plasmonic layer, including a plurality of discrete plasmonic particles, is interposed between the top and bottom electrodes and in contact with the dielectric layer. In one aspect, the plasmonic layer is embedded in the dielectric layer. Alternately, the plasmonic layer overlies the bottom (or top) electrode. Then, the dielectric layer overlies the plasmonic layer particles and exposed regions of the bottom electrode between the first plasmonic layer particles.
    Type: Application
    Filed: November 19, 2009
    Publication date: May 12, 2011
    Inventors: Liang Tang, Akinori Hashimura, Apostolos T. Voutsas
  • Publication number: 20110109854
    Abstract: A color-tunable plasmonic device is provided with a partially modulated refractive index. A first dielectric layer overlies a bottom electrode, and has a refractive index non-responsive to an electric field. A second dielectric layer overlies the first dielectric layer, having a refractive index responsive to an electric field. An electrically conductive top electrode overlies the second dielectric layer. A plasmonic layer including a plurality of discrete plasmonic particles is interposed between the top and bottom electrodes. In one aspect, the plasmonic layer is interposed between the first and second dielectric layers. In a second aspect, the plasmonic layer is interposed between the first dielectric layer and the bottom electrode. In a third aspect, a first plasmonic layer is interposed between the first dielectric layer and the bottom electrode, and a second plasmonic layer of discrete plasmonic particles is interposed between the first dielectric layer and the second dielectric layer.
    Type: Application
    Filed: November 6, 2009
    Publication date: May 12, 2011
    Inventors: Liang Tang, Akinori Hashimura, Apostolos T. Voutsas
  • Publication number: 20110109956
    Abstract: A plasmonic display device is provided that uses physical modulation mechanisms. The device is made from an electrically conductive bottom electrode and a first dielectric layer overlying the bottom electrode. The first dielectric layer is a piezoelectric material having an index of expansion responsive to an electric field. An electrically conductive top electrode overlies the first dielectric layer. A first plasmonic layer, including a plurality of discrete plasmonic particles, is interposed between the top and bottom electrodes and in contact with the first dielectric layer. In one aspect, the plasmonic particles are an expandable polymer material covered with a metal coating having a size responsive to an electric field.
    Type: Application
    Filed: December 23, 2009
    Publication date: May 12, 2011
    Inventors: Akinori Hashimura, Liang Tang, Apostolos T. Voutsas
  • Publication number: 20110075245
    Abstract: A full color range analog controlled interferometric modulation device is provided. The device includes a transparent substrate, and a transparent fixed-position electrically conductive electrode with a bottom surface overlying the substrate. A transparent spacer overlies the fixed-position electrode, and an induced absorber overlies the spacer. An optically reflective electrically conductive moveable membrane overlies the induced absorber. A cavity is formed between the induced absorber and the moveable membrane having a maximum air gap dimension less than the spacer thickness. In one aspect, the distance from the top surface of the fixed-position electrode to a cavity lower surface is at least twice as great as the cavity maximum air gap dimension. In another aspect, at least one anti-reflective coating (ARC) layer is interposed between the substrate and the fixed-position electrode, and at least one ARC layer is interposed between the fixed-position electrode and the spacer.
    Type: Application
    Filed: September 28, 2009
    Publication date: March 31, 2011
    Inventors: Akinori Hashimura, Douglas J. Tweet, Apostolos T. Voutsas
  • Publication number: 20110074808
    Abstract: A display device is provided that includes a plurality of pixels, where each pixel includes a single subpixel. In a first aspect, a single subpixel is able to sequentially generate a plurality of (e.g., at least three) primary colors. As a result of the single subpixel, the display is able to supply a gamut of colors including at least 3 primaries colors. For example, the sequential generation of the 3 primary colors may involve operating the subpixel in a time division multiplex (TDM) mode, and a primary combination color is supplied in response to the subpixel generating 2 primary colors in respective TDM subframes. When the pixel includes at least two neighboring subpixels, the pixel may additionally be operated in a spatial division multiple (SDM) mode or in the TDM mode.
    Type: Application
    Filed: March 30, 2010
    Publication date: March 31, 2011
    Inventors: Jiandong Huang, Scott J. Daly, Apostolos T. Voustas, Akinori Hashimura, Xiao-fan Feng
  • Patent number: 7907025
    Abstract: An electromechanical resonator includes a resonator portion which includes a fixed electrode and an oscillator formed separately from the fixed electrode with a gap. The gap has a first gap region and a second gap region which are arranged in a thickness direction of the fixed electrode. The first gap region is different in width from the second gap region.
    Type: Grant
    Filed: January 21, 2008
    Date of Patent: March 15, 2011
    Assignee: Panasonic Corporation
    Inventor: Akinori Hashimura
  • Patent number: 7902942
    Abstract: A resonator and a filter that can be miniaturized and highly integrated are provided. In the invention, a resonator wherein parts of resonators, support sections, and joint sections are mutually shared is formed. The mutual configuration is selectively switched as required and a large number of frequencies can be selected in the same filter unit. The resonators, the support sections, and the joint sections different in size and shape are used in combination, whereby a filter unit having a large number of selective frequencies is provided.
    Type: Grant
    Filed: September 19, 2006
    Date of Patent: March 8, 2011
    Assignee: Panasonic Corporation
    Inventor: Akinori Hashimura
  • Publication number: 20100109810
    Abstract: A resonator and a filter that can be miniaturized and highly integrated are provided. In the invention, a resonator wherein parts of resonators, support sections, and joint sections are mutually shared is formed. The mutual configuration is selectively switched as required and a large number of frequencies can be selected in the same filter unit. The resonators, the support sections, and the joint sections different in size and shape are used in combination, whereby a filter unit having a large number of selective frequencies is provided.
    Type: Application
    Filed: September 19, 2006
    Publication date: May 6, 2010
    Applicant: Matsushita Electric Industrial Co., Ltd.
    Inventor: Akinori Hashimura
  • Patent number: 7696843
    Abstract: An object of the invention is to provide a coupling element of an MEMS filter with design flexibility and minimization of mass loading effects. The invention provides a structure wherein the mass loading effects are not reflected on the MEMS filter characteristic by using a nanosize coupling element with a very small mass compared to a microsize MEMS resonator, such as a carbon nanotube (CNT), as a coupling element part.
    Type: Grant
    Filed: July 25, 2005
    Date of Patent: April 13, 2010
    Assignee: Panasonic Corporation
    Inventor: Akinori Hashimura
  • Publication number: 20090195330
    Abstract: An object is to provide a resonator and a vibrator with a high Q value in which dissipation of vibration energy in vibration of the vibrator is small, and a thickness of a support part of the vibrator of a beam structure is made thicker than a thickness of the vibrator and the support part is formed in axisymmetry with respect to a length direction of a beam. By this configuration, brittleness of the support part is improved and loss of vibration energy from the support part is reduced and also loss of vibration energy resulting from surface roughness of a surface of the vibrator can be reduced, so that a resonator having a high Q value can be provided.
    Type: Application
    Filed: June 14, 2007
    Publication date: August 6, 2009
    Applicant: PANASONIC CORPORATION
    Inventors: Kunihiko Nakamura, Michiaki Matsuo, Yoshito Nakanishi, Akinori Hashimura