Patents by Inventor Alan D. Kersey

Alan D. Kersey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20030086150
    Abstract: A reconfigurable optical interleaver/deinterleaver device combines/separates a pair of optical input signals from and/or to an optical WDM input signal. The interleaver device includes a spatial light modulator having a micro-mirror device with a two-dimensional array of micro-mirrors that flip between first and second positions in a “digital” fashion in response to a control signal provided by a controller in accordance with a switching algorithm and an input command. A pair of collimators, diffraction gratings and Fourier lens collectively collimate, separate and focus the optical input channels and optical add channels onto the array of micro-mirrors. Each optical channel is focused on a plurality of micro-mirrors of the micro-mirror device, which effectively pixelates the optical channels.
    Type: Application
    Filed: September 25, 2002
    Publication date: May 8, 2003
    Applicant: CiDRA Corporation
    Inventors: John A. Moon, Alan D. Kersey, Jay W. Dawson, James R. Dunphy, Joseph Pinto, Christian O'Keefe, Paul Szczepanek
  • Publication number: 20030081321
    Abstract: An optical cross-connect is provided that selectively switches at least one desired optical channel between a pair of optical WDM input signals. The cross-connect includes a spatial light modulator having a micro-mirror device with a two-dimensional array of micro-mirrors. The micro-mirrors tilt or flip between a first and second position in a “digital” fashion in response to a control signal provided by a controller in accordance with a switching algorithm and an input command. A pair of collimators diffraction gratings and Fourier lens collectively collimate, separate and focus the optical input channels and optical add channels onto the array of micro-mirrors. Each optical channel is focused on the micro-mirrors onto a plurality of micro-mirrors of the micro-mirror device, which effectively pixelates the optical channels. The optical channels have a cross-section (e.g.
    Type: Application
    Filed: September 25, 2002
    Publication date: May 1, 2003
    Applicant: CiDRA Corporation
    Inventors: John A. Moon, Alan D. Kersey, Jay W. Dawson, James R. Dunphy, Joseph Pinto
  • Publication number: 20030072531
    Abstract: A tunable dispersion compensating device includes a grating element in the form of a bulk or large diameter waveguide, having an outer cladding disposed about an inner core. The grating element may be etched, grounded or machined to form a generally “dog bone” shape, wherein the end portions of the grating element has a larger diameter than the center portion disposed therebetween. A chirped grating is written or impressed within the portion of the core disposed in the center portion of the grating element. The center portion is tapered to allow different stresses to be applied along the grating length when the grating element is compressed longitudinally by force F, and thereby vary chirp of the grating to tunably compensate for dispersion.
    Type: Application
    Filed: August 20, 2002
    Publication date: April 17, 2003
    Inventors: Martin A. Putnam, Alan D. Kersey, Timothy J. Bailey
  • Publication number: 20030035628
    Abstract: An optical filter, including a Bragg grating, is compression tuned such that when under one compressional load (or no load) the grating has a first profile and under a second compressional load the grating has a second profile. One application is to allow the grating filter function to be parked optically between channels of a WDM or DWDM optical system.
    Type: Application
    Filed: August 22, 2002
    Publication date: February 20, 2003
    Inventors: Martin A. Putnam, Alan D. Kersey, Timothy J. Bailey
  • Patent number: 6519388
    Abstract: A tube-encased fiber grating includes an optical fiber 10 having at least one Bragg grating 12 impressed therein which is embedded within a glass capillary tube 20. Light 14 is incident on the grating 12 and light 16 is reflected at a reflection wavelength &lgr;1. The shape of the tube 20 may be other geometries (e.g., a “dogbone” shape) and/or more than one concentric tube may be used or more than one grating or pair of gratings may be used. The fiber 10 may be doped at least between a pair of gratings 150,152, encased in the tube 20 to form a tube-encased compression-tuned fiber laser or the grating 12 or gratings 150,152 may be constructed as a tunable DFB fiber laser encased in the tube 20. Also, the tube 20 may have an inner region 22 which is tapered away from the fiber 10 to provide strain relief for the fiber 10, or the tube 20 may have tapered (or fluted) sections 27 which have an outer geometry that decreases down to the fiber 10 and provides added fiber pull strength.
    Type: Grant
    Filed: December 6, 1999
    Date of Patent: February 11, 2003
    Assignee: CiDRA Corporation
    Inventors: Mark R. Fernald, Timothy J. Bailey, Matthew B. Miller, James M. Sullivan, Michael A. Davis, Peter Ogle, Alan D. Kersey, Martin A. Putnam, Robert N. Brucato, Paul E. Sanders
  • Publication number: 20030021306
    Abstract: A compression-tuned Bragg grating-based laser 800 includes a pair of optical grating elements 802,804 wherein at least one of the grating elements is tunable by a compression device 812,814. The grating elements may include either an optical fiber 10 having at least one Bragg grating 12 impressed therein encased within and fused to at least a portion of a glass capillary tube 20 or a large diameter waveguide grating element 600 having a core and a wide cladding. The tunable grating element(s) 802,804 are axially compressed, which causes a shift in the reflection wavelength of the gratings 807,809 without buckling the element. The shape of the element may be other geometries (e.g., a “dogbone” shape) and/or more than one grating or pair of gratings may be used and more than one fiber 10 or core 612 may be used. A gain element, such as Erbium doped fiber, is optical disposed between the grating elements to provide the lasing cavity.
    Type: Application
    Filed: May 16, 2002
    Publication date: January 30, 2003
    Inventors: Mark R. Fernald, Timothy J. Bailey, Matthew B. Miller, James M. Sullivan, Michael A. Davis, Robert N. Brucato, Martin A. Putnam, Alan D. Kersey, Paul E. Sanders, Jon T. Kringlebotn
  • Publication number: 20020197037
    Abstract: A large diameter D-shaped optical waveguide device 9, includes an optional circular waveguide portion 11 and a D-shaped waveguide portion 10 having at least one core 12 surrounded by a cladding 14. A portion of the waveguide device 9 has a generally D-shaped cross-section and has transverse waveguide dimension d2 greater than about 0.3 mm. At least one Bragg grating 16 may be impressed in the waveguide 10 and/or more than one grating or pair of gratings may be used and more than one core may be used. The device 9 provides a sturdy waveguide platform for coupling light into and out of waveguides and for attachment and alignment to other waveguides, for single and multi-core applications. The core and/or cladding 12,14 may be doped with a rare-earth dopant and/or may be photosensitive. At least a portion of the core 12 may be doped between a pair of gratings 50,52 to form a fiber laser or the grating 16 or may be constructed as a tunable DFB fiber laser or an interactive fiber laser within the waveguide 10.
    Type: Application
    Filed: March 18, 2002
    Publication date: December 26, 2002
    Inventors: Timothy J. Bailey, Robert N. Brucato, Alan D. Kersey, Martin A. Putnam, Paul Sanders, James Sullivan
  • Publication number: 20020194917
    Abstract: A fiber grating pressure sensor includes an optical sensing element 20,600 which includes an optical fiber 10 having a Bragg grating 12 impressed therein which is encased within and fused to at least a portion of a glass capillary tube 20 and/or a large diameter waveguide grating 600 having a core and a wide cladding and which has an outer transverse dimension of at least 0.3 mm. Light 14 is incident on the grating 12 and light 16 is reflected from the grating 12 at a reflection wavelength &lgr;1. The sensing element 20,600 may be used by itself as a sensor or located within a housing 48,60,90,270,300. When external pressure P increases, the grating 12 is compressed and the reflection wavelength &lgr;1 changes. The shape of the sensing element 20,600 may have other geometries, e.g., a “dogbone” shape, so as to enhance the sensitivity of shift in &lgr;1 due to applied external pressure and may be fused to an outer shell 50.
    Type: Application
    Filed: July 9, 2002
    Publication date: December 26, 2002
    Applicant: Weatherford/Lamb, Inc.
    Inventors: Mark R. Fernald, Timothy J. Bailey, Matthew B. Miller, James M. Sullivan, James R. Dunphy, Michael A. Davis, Christopher J. Wright, Alan D. Kersey, Martin A. Putnam, Robert N. Brucato, Paul E. Sanders
  • Publication number: 20020196995
    Abstract: An optical sensing device including a force-applying assembly for providing a force and a Fabry-Perot (FP) element including a large-diameter waveguide having a core and having a cavity in line with the core, the cavity having reflective surfaces and having an optical path length related to the distance between the reflective surfaces, the FP element being coupled to the force so that the optical path length changes according to the force, the FP element for providing an output optical signal containing information about a parameter that relates to the force. Sometimes the large-diameter waveguide is formed by collapsing a glass tube, having a bore and having an outer diameter of about one millimeter, onto a pair of optical fibers arranged in tandem in the bore and separated by a predetermined distance, and respective end faces of the optical fibers form the cavity and are coated with a wholly or partially reflective material.
    Type: Application
    Filed: May 17, 2002
    Publication date: December 26, 2002
    Applicant: WEATHERFORD/LAMB, INC.
    Inventors: Alan D. Kersey, Martin A. Putnam, Mark R. Fernald, Robert N. Brucato, James S. Sirkis
  • Patent number: 6490931
    Abstract: A fused tension-based fiber grating pressure sensor includes an optical fiber having a Bragg grating impressed therein. The fiber is fused to tubes on opposite sides of the grating and an outer tube is fused to the tubes to form a chamber. The tubes and fiber may be made of glass. Light is incident on the grating and light is reflected from the grating at a reflection wavelength &lgr;1. The grating is initially placed in tension as the pressure P increases, the tension on the grating reduced and the reflection wavelength shifts accordingly. A temperature grating may be used to measure temperature and allow for a temperature-corrected pressure measurement.
    Type: Grant
    Filed: September 20, 1999
    Date of Patent: December 10, 2002
    Assignee: Weatherford/Lamb, Inc.
    Inventors: Mark R. Fernald, Timothy J. Bailey, Matthew B. Miller, James M. Sullivan, James R. Dunphy, Christopher J. Wright, Martin A. Putnam, Robert J. Maron, Richard T. Jones, Guy A. Daigle, John J. Grunbeck, Alan D. Kersey
  • Patent number: 6489606
    Abstract: The present invention provides a sensor system for sensing a parameter, comprising an optical source, coupler and signal processor system in combination with multiple structured fiber Bragg gratings. The optical source, coupler and signal processor system provide an optical source signal to the multiple structured fiber Bragg gratings. The optical source, coupler and signal processor system also responds to multiple structured fiber Bragg grating signals, for providing an optical source, coupler and signal processor system signal containing information about a sensed parameter. The multiple structured fiber Bragg gratings respond to the optical source signal, and further respond to the sensed parameter, for providing the multiple structured fiber Bragg grating signals containing information about a complex superposition of spectral responses or codes related to the sensed parameter.
    Type: Grant
    Filed: April 7, 2000
    Date of Patent: December 3, 2002
    Assignee: CiDRA Corporation
    Inventors: Alan D. Kersey, Robert A. Rubino, James R. Dunphy
  • Publication number: 20020176149
    Abstract: A variable optical source 801 to selectively provide a desired optical output signal in response to a control signal is provided. The optical source includes an optical filter that attenuates a broadband optical input signal or a multi-spectral input signal 802. The optical filter is controllable or programmable to selectively provide a desired filter function. The optical filter 10 includes a spatial light modulator 36, which may comprise an array of micromirrors 52 that effectively forms a two-dimensional diffraction grating mounted in a retro-reflecting configuration. The input optical signal is dispersed onto the array of micro-mirrors 52 along a spectral axis or direction 55 such that input light is spread over a plurality of micromirrors to effectively pixelate the light.
    Type: Application
    Filed: April 3, 2002
    Publication date: November 28, 2002
    Inventors: Michael Davis, Alan D. Kersey, John Moon, James Dunphy, James Sirkis, Joseph Pinto, Paul Szczepanek
  • Publication number: 20020176151
    Abstract: An dynamic optical filter 10 is provided to selectively attenuate or filter a wavelength band(s) of light (i.e., optical channel(s)) or a group(s) of wavelength bands of an optical WDM input signal 12. The optical filter is controllable or programmable to selectively provide a desired filter function. The optical filter 10 includes a spatial light modulator 36, which comprises an array of micromirrors 52 that effectively forms a two-dimensional diffraction grating mounted in a retro-reflecting configuration. Each optical channel 14 is dispersed separately or overlappingly onto the array of micro-mirrors 52 along a spectral axis or direction 55 such that each optical channel or group of optical channels are spread over a plurality of micromirrors to effectively pixelate each of the optical channels or input signal.
    Type: Application
    Filed: April 3, 2002
    Publication date: November 28, 2002
    Inventors: John Moon, Alan D. Kersey, James Sirkis, James Dunphy, Joseph Pinto, Paul Szczepanek, Michael Davis
  • Publication number: 20020172446
    Abstract: A pressure-isolated Bragg grating temperature sensor includes an optical element 20,600 which includes an optical fiber 10 having at least one Bragg grating 12 disposed therein which is encased within and fused to at least a portion of an inner glass capillary tube 20 and/or a large diameter waveguide grating 600 having a core and a wide cladding and having the grating 12 disposed therein, which is encased within an outer tube 40 to form a chamber 44. An extended portion 58 of the sensing element that has the grating 12 therein extends inwardly into the chamber 44 which allows the grating 12 to sense temperature changes but isolates the grating 12 from external pressure. An end tube 42 may be attached to the tube 40 and the fiber 10 fed therethrough to form the chamber 44 and a pass-through for the fiber 10. As the external pressure P increases, the outer tube 40 compresses or deflects, the sensing element 20,600 moves closer to the end tube 42 and/or the outer tube 40 move toward each other.
    Type: Application
    Filed: July 12, 2002
    Publication date: November 21, 2002
    Inventors: Mark R. Fernald, Timothy J. Bailey, Matthew B. Miller, James M. Sullivan, Richard T. Jones, Christopher J. Wright, Alan D. Kersey, Martin A. Putnam, Robert N. Brucato, Paul E. Sanders
  • Publication number: 20020152802
    Abstract: In industrial sensing applications at least one parameter of at least one fluid in a pipe 12 is measured using a spatial array of acoustic pressure sensors 14, 16, 18 placed at predetermined axial locations x1, x2, x3 along the pipe 12. The pressure sensors 14, 16, 18 provide acoustic pressure signals P1(t), P2(t), P3(t) on lines 20, 22, 24 which are provided to signal processing logic 60 which determines the speed of sound amix of the fluid (or mixture) in the pipe 12 using acoustic spatial array signal processing techniques with the direction of propagation of the acoustic signals along the longitudinal axis of the pipe 12. Numerous spatial array-processing techniques may be employed to determine the speed of sound amix. The speed of sound amix is provided to logic 48, which calculates the percent composition of the mixture, e.g., water fraction, or any other parameter of the mixture, or fluid, which is related to the sound speed amix. The logic 60 may also determine the Mach number Mx of the fluid.
    Type: Application
    Filed: November 8, 2001
    Publication date: October 24, 2002
    Inventors: Daniel L. Gysling, Alan D. Kersey, James D. Paduano
  • Publication number: 20020154860
    Abstract: A fiber grating pressure sensor for use in an industrial process includes an optical sensing element 20,600 which includes an optical fiber 10 having a Bragg grating 12 impressed therein which is encased within and fused to at least a portion of a glass capillary tube 20 and/or a large diameter waveguide grating 600 having a core and a wide cladding and which has an outer transverse dimension of at least 0.3 mm. Light 14 is incident on the grating 12 and light 16 is reflected from the grating 12 at a reflection wavelength &lgr;1. The sensing element 20,600 may be used by itself as a sensor or located within a housing 48,60,90,270,300. When external pressure P increases, the grating 12 is compressed and the reflection wavelength &lgr;1 changes. The shape of the sensing element 20,600 may have other geometries, e.g., a “dogbone” shape, so as to enhance the sensitivity of shift in &lgr;1 due to applied external pressure and may be fused to an outer shell 50.
    Type: Application
    Filed: November 8, 2001
    Publication date: October 24, 2002
    Inventors: Mark R. Fernald, Timothy J. Bailey, Matthew B. Miller, James M. Sullivan, James R. Dunphy, Michael A. Davis, Christopher J. Wright, Alan D. Kersey, Martin A. Putnam, Robert N. Brucato, Paul E. Sanders
  • Patent number: 6470036
    Abstract: A tunable external cavity semiconductor laser incorporating a tunable Bragg grating, including: a semiconductor gain medium; an elongated tuner housing having a tuner housing head and having a tuner housing foot, the tuner housing head and tuner housing foot being rigidly connected; a span of waveguide having a Bragg grating, for receiving the source light and for providing in turn the reflected light, and having a waveguide head and a waveguide foot, the waveguide head abutting the tuner housing head and the waveguide foot disposed toward the tuner housing foot; a piezoelectric crystal or other device or arrangement for providing a compressive force, disposed so as to abut the waveguide foot and also to abut the tuner housing foot, the means for applying a compressive force for exerting a compressive force on the span of waveguide along the direction of the axis of the span of waveguide, the compressive force being sufficient to alter the grating so as to affect the wavelength of light reflected by the grati
    Type: Grant
    Filed: November 3, 2000
    Date of Patent: October 22, 2002
    Assignee: CiDRA Corporation
    Inventors: Timothy J. Bailey, Robert N. Brucato, Michael A. Davis, Alan D. Kersey, Martin A. Putnam, Paul E. Sanders, James S. Sirkis
  • Publication number: 20020150336
    Abstract: A wavelength monitoring device is provided having an optical reflecting element for reflecting an incoming optical signal to a detector, wherein the device features a narrowband optical reflecting element for reflecting only a narrowband portion of the incoming optical signal to the optical reflecting element. The narrowband optical reflecting element has a reflection function having a bandwidth and shape that determines the narrowband portion of the incoming optical signal. The narrowband optical reflecting element may be a Bragg grating for spectrally processing the incoming optical signal, while the optical reflecting element may be a blazed Bragg grating for reflecting the spectrally processing incoming optical signal to the detector. The detector determines an amount of optical power reflected by the Bragg grating and discriminates between reflections of individual gratings, and is a spatial filter for providing a direct correlation between individual detector elements and a specific wavelength range.
    Type: Application
    Filed: March 16, 2002
    Publication date: October 17, 2002
    Inventors: Michael A. Davis, Alan D. Kersey
  • Publication number: 20020134144
    Abstract: At least one parameter of at least one fluid in a pipe 12 is measured using a spatial array of acoustic pressure sensors 14,16,18 placed at predetermined axial locations x1,x2,x3 along the pipe 12. The pressure sensors 14,16,18 provide acoustic pressure signals P1(t), P2(t), P3(t) on lines 20,22,24 which are provided to signal processing logic 60 which determines the speed of sound amix of the fluid (or mixture) in the pipe 12 using acoustic spatial array signal processing techniques with the direction of propagation of the acoustic signals along the longitudinal axis of the pipe 12. Numerous spatial array processing techniques may be employed to determined the speed of sound amix. The speed of sound amix is provided to logic 48 which calculates the percent composition of the mixture, e.g., water fraction, or any other parameter of the mixture or fluid which is related to the sound speed amix. The logic 60 may also determine the Mach number Mx of the fluid.
    Type: Application
    Filed: January 29, 2002
    Publication date: September 26, 2002
    Inventors: Daniel L. Gysling, Alan D. Kersey, James D. Paduano
  • Patent number: 6452667
    Abstract: A pressure-isolated Bragg grating temperature sensor includes an optical element which includes an optical fiber having at least one Bragg grating disposed therein. The Bragg grating is encased within and fused to at least a portion of an inner glass capillary tube, or comprises a large diameter waveguide grating having a core and a wide cladding and having the grating disposed therein, encased within an outer tube to form a chamber. An extended portion of the sensing element that has the grating therein extends inwardly into the chamber which allows the grating to sense temperature changes but isolates the grating from external pressure. More than one grating or pair of gratings may be used and more than one fiber or optical core may be used. At least a portion of the sensing element may be doped between a pair of gratings to form a temperature tuned laser, or the grating or gratings may be configured as a tunable DFB laser disposed in the sensing element.
    Type: Grant
    Filed: December 6, 1999
    Date of Patent: September 17, 2002
    Assignee: Weatherford/Lamb Inc.
    Inventors: Mark R. Fernald, Timothy J. Bailey, Matthew B. Miller, James M. Sullivan, Richard T. Jones, Christopher J. Wright, Alan D. Kersey, Martin A. Putnam, Robert N. Brucato, Paul E. Sanders