Patents by Inventor Alan D. Kersey

Alan D. Kersey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100099574
    Abstract: A method of identifying an analyte. The method includes providing a plurality of microparticles. The microparticles have optically detectable codes extending along bodies of the corresponding microparticle. The microparticles have the chemical probes attached thereto. Each of the chemical probes is associated with a corresponding one of the codes. The method also includes selectively binding target analytes to the chemical probes on the microparticles to produce labeled microparticles and distributing the labeled microparticles to random locations of a substrate. The method also includes determining the codes for the labeled microparticles in the random array and code positions of the codes in the random array. The method further includes detecting the label on the labeled microparticles in the random array and label positions of the labels in the random array. The method also includes using the code positions and the label positions to analyze the target analyte.
    Type: Application
    Filed: December 22, 2009
    Publication date: April 22, 2010
    Applicant: CYVERA CORPORATION
    Inventors: JOHN A. MOON, ALAN D. KERSEY, MARTIN A. PUTNAM, TUO LI
  • Patent number: 7672794
    Abstract: A system for monitoring, diagnosing, and/or controlling a flow process uses one or more flow meters based on an array of pressure sensors. A signal processor outputs at least one of a flow signal, a diagnostic signal, and a control signal in response to the pressure signals from the pressure sensors. The flow signal indicates the at least one parameter of the fluid, the diagnostic signal indicates a diagnostic condition of a device in the flow process, and the control signal is effective in adjusting an operating parameter of at least one device in the flow process. The system may be arranged as a distributed control system (DCS) architecture for monitoring a plurality of flow meters based on array-processing installed at various locations throughout a flow process.
    Type: Grant
    Filed: June 24, 2004
    Date of Patent: March 2, 2010
    Assignee: Expro Meters, Inc.
    Inventors: Daniel L. Gysling, Alan D. Kersey, Patrick Curry
  • Patent number: 7669440
    Abstract: A side-hole optical cane for measuring pressure and/or temperature is disclosed. The side-hole cane has a light guiding core containing a sensor and a cladding containing symmetrical side-holes extending substantially parallel to the core. The side-holes cause an asymmetric stress across the core of the sensor creating a birefringent sensor. The sensor, preferably a Bragg grating, reflects a first and second wavelength each associated with orthogonal polarization vectors, wherein the degree of separation between the two is proportional to the pressure exerted on the core. The side-hole cane structure self-compensates and is insensitive to temperature variations when used as a pressure sensor, because temperature induces an equal shift in both the first and second wavelengths. Furthermore, the magnitude of these shifts can be monitored to deduce temperature, hence providing the side-hole cane additional temperature sensing capability that is unaffected by pressure.
    Type: Grant
    Filed: July 12, 2005
    Date of Patent: March 2, 2010
    Assignee: Weatherford/Lamb, Inc.
    Inventors: Alan D. Kersey, John L. Maida
  • Patent number: 7659983
    Abstract: A method and apparatus for performing an assay process, featuring providing microbeads in a solution, each microbead having a particle substrate with a grating with a superposition of different predetermined regular periodic variations of the index of refraction disposed in the particle along a grating axis and indicative of a code; placing the microbeads on an alignment substrate; reading codes of the microbeads and the position thereof on the alignment substrate; reading the fluorescence on each microbead and the position order thereof on the alignment substrate; and determining an assay result based on bead position order and bead code of the earlier reading steps.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: February 9, 2010
    Assignee: Electronics and Telecommunications Resarch Institute
    Inventors: John A. Moon, Alan D. Kersey, Martin A. Putnam, Tuo Li
  • Publication number: 20100025482
    Abstract: A composition including an item and an optical identification element that is physically associated with the item. The optical identification element includes a binder material and one or more materials embedded in the binder material. The one or more materials provides a composite X-ray diffraction pattern when illuminated by an X-ray beam. The composite X-ray diffraction pattern being indicative of a code. The code relating to information about the item.
    Type: Application
    Filed: September 15, 2009
    Publication date: February 4, 2010
    Applicant: ILLUMINA CORPORATION
    Inventors: JOHN A. MOON, MARTIN A. PUTNAM, ALAN D. KERSEY, PAUL SZCZEPANEK
  • Patent number: 7623624
    Abstract: An optical identification element for identifying an item. The optical identification element includes a binder material and one or more materials embedded in the binder material. The one or more materials provides an encoded composite X-ray diffraction pattern when illuminated by an X-ray beam. The encoded composite X-ray diffraction pattern is indicative of the item.
    Type: Grant
    Filed: November 16, 2006
    Date of Patent: November 24, 2009
    Assignee: Illumina, Inc.
    Inventors: John A. Moon, Martin A. Putnam, Alan D. Kersey, Paul Szczepanek
  • Patent number: 7623976
    Abstract: A system of one or more configurable flowmeters allows an individual, locally or remotely, to selectively activate one or more functions of the flowmeters. The individual is capable of selecting which parameter of the process flow that the flowmeter is to measure, thereby effectively providing latent functions that may be selectively brought on line or shut off. The system may also allow an individual, locally or remotely, to selectively activate one or more latent flowmeters in the system. The system may be a distributed control system (DCS), which receives input signals from conventional meters and devices in the process flow and provides control signals to one or more devices in the flow process. The system may also provide a method of flowmeter selection and billing.
    Type: Grant
    Filed: June 24, 2004
    Date of Patent: November 24, 2009
    Assignee: CiDRA Corporate Services, Inc.
    Inventors: Daniel L. Gysling, Alan D. Kersey, F. Kevin Didden
  • Publication number: 20090194589
    Abstract: An optical reader system that includes a plurality of substrates. The substrates have an optically readable code disposed therein and a source light assembly that is configured to illuminate the substrates with a code-reading beam and another beam for detecting another optically readable property of the substrate. The code-reading beam and the other beam form beam spots on the substrates that have different shapes. The system also includes a reader that is configured to receive output signals from the code-reading beam and the other beam when the substrates are illuminated. The output signals from the code-reading beam are indicative of the code.
    Type: Application
    Filed: July 16, 2008
    Publication date: August 6, 2009
    Applicant: ILLUMINA, INC.
    Inventors: JOHN A. MOON, DAVID R. FOURNIER, MARTIN A. PUTNAM, ALAN D. KERSEY, TUO LI
  • Patent number: 7508608
    Abstract: A method for fabricating an optical identification element is provided, wherein a removable plate or substrate having photosensitive material fabricated thereon, one or more gratings are written on the photosensitive material, then lines are etched to create one or more separate optical identification elements. The one or more gratings may be written by exposing the photosensitive material to ultraviolet (UV) light. The lines may be etched to create the one or more separate optical identification elements by photolithography to define/create the same.
    Type: Grant
    Filed: November 17, 2005
    Date of Patent: March 24, 2009
    Assignee: Illumina, Inc.
    Inventors: Alan D. Kersey, John A. Moon, Martin A. Putnam
  • Publication number: 20090073520
    Abstract: A method for fabricating microparticles is provided. The method includes providing a removable substrate that has a photosensitive material. The substrate has a plurality of inner regions. Each inner region surrounds a corresponding outer region. The method also includes providing at least one optically detectable code within at least one of the inner regions of the substrate and etching lines into the substrate to create a plurality of microparticles having at least one optically detectable code therein. The microparticles have elongated bodies that extend in an axial direction. The optically detectable codes extend in the axial direction within the microparticles.
    Type: Application
    Filed: September 23, 2008
    Publication date: March 19, 2009
    Applicant: Illumina, Inc.
    Inventors: ALAN D. KERSEY, JOHN A. MOON, MARTIN A. PUTNAM
  • Patent number: 7474966
    Abstract: A apparatus 10,110,170 is provided that measures the speed of sound and/or vortical disturbances propagating in a single phase fluid flow and/or multiphase mixture to determine parameters, such as mixture quality, particle size, vapor/mass ratio, liquid/vapor ratio, mass flow rate, enthalpy and volumetric flow rate of the flow in a pipe, by measuring acoustic and/or dynamic pressures. The apparatus includes a spatial array of unsteady pressure sensors 15-18 placed at predetermined axial locations x1-xN disposed axially along the pipe 14. The pressure sensors 15-18 provide acoustic pressure signals P1(t)-PN(t) to a signal processing unit 30 which determines the speed of sound amix propagating through of the process flow 12 flowing in the pipe 14. The pressure sensors are piezoelectric film sensors that are mounted or clamped onto the outer surface of the pipe at the respective axial location.
    Type: Grant
    Filed: September 14, 2006
    Date of Patent: January 6, 2009
    Assignee: Expro Meters. Inc
    Inventors: Mark R. Fernald, Michael A. Davis, Alan D. Kersey, Douglas Loose, Timothy J. Bailey
  • Publication number: 20080317420
    Abstract: A large diameter optical waveguide, grating, and laser includes a waveguide having at least one core surrounded by a cladding, the core propagating light in substantially a few transverse spatial modes; and having an outer waveguide dimension of said waveguide being greater than about 0.3 mm. At least one Bragg grating may be impressed in the waveguide. The waveguide may be axially compressed which causes the length of the waveguide to decrease without buckling. The waveguide may be used for any application where a waveguide needs to be compression tuned. Also, the waveguide exhibits lower mode coupling from the core to the cladding and allows for higher optical power to be used when writing gratings without damaging the waveguide. The waveguide may resemble a short “block” or a longer “cane” type, depending on the application and dimensions used.
    Type: Application
    Filed: August 27, 2008
    Publication date: December 25, 2008
    Inventors: MARTIN A. PUTNAM, Robert N. Brucato, Paul E. Sanders, Timothy J. Bailey, James M. Sullivan, Alan D. Kersey
  • Patent number: 7441703
    Abstract: An optical reader system 7 for diffraction grating-based encoded microbeads (or bead reader system), comprises a reader box 100, which accepts a bead cell (or cuvette) 102 that holds the microbeads 8, having an embedded code therein. The reader box 100 interfaces along lines 103 with a known computer system 104. The reader box 100 interfaces with a stage position controller 112 and the controller 112 interfaces along a line 115 with the computer system 104 and a manual control device (or joy stick) 116 along a line 117. The reader interrogates the microbeads to determine the embedded code and/or the fluorescence level on the beads. The reader provides information similar to a bead flow cytometer but in a planar format, i.e., a virtual cytometer.
    Type: Grant
    Filed: October 1, 2004
    Date of Patent: October 28, 2008
    Assignee: Illumina, Inc.
    Inventors: John A. Moon, David R. Fournier, Martin A. Putnam, Alan D. Kersey, Tuo Li
  • Patent number: 7437043
    Abstract: A large diameter optical waveguide, grating, and laser includes a waveguide 10 having at least one core 12 surrounded by a cladding 14, the core propagating light in substantially a few transverse spatial modes; and having an outer waveguide dimension d2 of said waveguide being greater than about 0.3 mm. At least one Bragg grating 16 may be impressed in the waveguide 10. The waveguide 10 may be axially compressed which causes the length L of the waveguide 10 to decrease without buckling. The waveguide 10 may be used for any application where a waveguide needs to be compression tuned, e.g., compression-tuned fiber gratings and lasers or other applications. Also, the waveguide 10 exhibits lower mode coupling from the core 12 to the cladding 14 and allows for higher optical power to be used when writing gratings 16 without damaging the waveguide 10. The shape of the waveguide 10 may have other geometries (e.g.
    Type: Grant
    Filed: January 3, 2006
    Date of Patent: October 14, 2008
    Assignee: Weatherford/Lamb, Inc.
    Inventors: Martin A. Putnam, Robert N. Brucato, Paul E. Sanders, Timothy J. Bailey, James M. Sullivan, Alan D. Kersey
  • Patent number: 7400985
    Abstract: A apparatus 10,110,170 is provided that measures the speed of sound and/or vortical disturbances propagating in a single phase fluid flow and/or multiphase mixture to determine parameters, such as mixture quality, particle size, vapor/mass ratio, liquid/vapor ratio, mass flow rate, enthalpy and volumetric flow rate of the flow in a pipe, by measuring acoustic and/or dynamic pressures. The apparatus includes a spatial array of unsteady pressure sensors 15-18 placed at predetermined axial locations x1-xN disposed axially along the pipe 14. The pressure sensors 15-18 provide acoustic pressure signals P1(t)-PN(t) to a signal processing unit 30 which determines the speed of sound amix propagating through of the process flow 12 flowing in the pipe 14. The pressure sensors are piezoelectric film sensors that are clamped onto the outer surface of the pipe at the respective axial location.
    Type: Grant
    Filed: November 12, 2003
    Date of Patent: July 15, 2008
    Assignee: CiDRA Corporation
    Inventors: Mark R. Fernald, Michael A. Davis, Alan D. Kersey, Timothy J. Bailey
  • Patent number: 7389187
    Abstract: An apparatus and method for measuring the flow velocity of a fluid flowing through a pipe that includes an array of at least two ultrasonic sensor units (with as many as 16 sensor units) disposed at predetermined locations along the pipe. Each sensor unit includes an ultrasonic transmitter and an ultrasonic receiver. Each sensor unit provides a respective signal indicative of a parameter of the transit time or amplitude of the ultrasonic signal propagating between each respective ultrasonic transmitter and ultrasonic receiver. A signal processor defines a convective ridge in the k-? plane in response to the ultrasonic signals using an adaptive beamforming algorithm, such as Capon and Music. The signal processor further determines the slope of at least a portion of the convective ridge to determine the flow velocity of the fluid.
    Type: Grant
    Filed: January 13, 2004
    Date of Patent: June 17, 2008
    Assignee: CiDRA Corporation
    Inventors: Alan D. Kersey, Daniel L. Gysling
  • Patent number: 7386204
    Abstract: An optical filter, including a pair of Bragg grating units optically coupled to respective ports of a circulator, is provided for filtering a selected wavelength band of light from a DWDM input light. Each grating unit includes a respective tunable optical element, which have a reflective element, such as a Bragg grating. Generally, one grating unit filters a selected wavelength band of light and reflects the selected wavelength band to the other grating unit, which reflects a portion of the reflected wavelength band to an output of the optical filter. This double reflection of the selected wavelength band provides an optical filter having an effective filter function that is equal to the product of the individual filter functions of the grating units. To create a desired effective filter function, the gratings may be written to have different filter functions or grating profiles.
    Type: Grant
    Filed: August 26, 2000
    Date of Patent: June 10, 2008
    Assignee: CiDRA Corporation
    Inventors: Michael A. Davis, Alan D. Kersey, Martin A. Putnam, Timothy J. Bailey
  • Publication number: 20080129990
    Abstract: A method and apparatus for performing an assay process, featuring providing microbeads in a solution, each microbead having a particle substrate with a grating with a superposition of different predetermined regular periodic variations of the index of refraction disposed in the particle along a grating axis and indicative of a code; placing the microbeads on an alignment substrate; reading codes of the microbeads and the position thereof on the alignment substrate; reading the fluorescence on each microbead and the position order thereof on the alignment substrate; and determining an assay result based on bead position order and bead code of the earlier reading steps.
    Type: Application
    Filed: November 30, 2006
    Publication date: June 5, 2008
    Inventors: John Moon, Alan D. Kersey, Martin A. Putnam, Tuo Li
  • Patent number: 7340353
    Abstract: A dual function flow measurement apparatus is provided that combines the functionality of an apparatus that measures the speed of sound propagating through a fluid flowing within a pipe, and measures pressures disturbances (e.g. vortical disturbances or eddies) moving with a fluid to determine respective parameters of the flow propagating through a pipe. The apparatus includes a sensing device that includes an array of pressure sensors used to measure the acoustic and convective pressure variations in the flow to determine desired parameters. The measurement apparatus includes a processing unit the processes serially or in parallel the pressure signals provided by the sensing array to provide output signals indicative of a parameter of the fluid flow relating to the velocity of the flow and the speed of sound propagating through the flow, respectively.
    Type: Grant
    Filed: October 23, 2006
    Date of Patent: March 4, 2008
    Assignee: CiDRA Corporation
    Inventors: Daniel L. Gysling, Alan D. Kersey, Michael A. Davis
  • Patent number: 7322245
    Abstract: In industrial sensing applications at least one parameter of at least one fluid in a pipe 12 is measured using a spatial array of acoustic pressure sensors 14,16,18 placed at predetermined axial locations x1, x2, x3 along the pipe 12. The pressure sensors 14,16,18 provide acoustic pressure signals P1(t), P2(t), P3(t) on lines 20,22,24 which are provided to signal processing logic 60 which determines the speed of sound amix of the fluid (or mixture) in the pipe 12 using acoustic spatial array signal processing techniques with the direction of propagation of the acoustic signals along the longitudinal axis of the pipe 12. Numerous spatial array-processing techniques may be employed to determine the speed of sound amix. The speed of sound amix is provided to logic 48, which calculates the percent composition of the mixture, e.g., water fraction, or any other parameter of the mixture, or fluid, which is related to the sound speed amix. The logic 60 may also determine the Mach number Mx of the fluid.
    Type: Grant
    Filed: December 5, 2005
    Date of Patent: January 29, 2008
    Assignee: CiDRA Corporation
    Inventors: Daniel L. Gysling, Alan D. Kersey, James D. Paduano