Patents by Inventor Alan Frank Evans

Alan Frank Evans has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210018697
    Abstract: Waveguide substrates, waveguide substrate assemblies, and methods for fabricating waveguide substrates are disclosed. In one embodiment, a waveguide substrate includes an input edge, an output edge, and at least one waveguide within the waveguide substrate. The waveguide substrate further includes at least one input alignment feature within the input edge adjacent to the input end of the at least one waveguide, wherein the at least one input alignment feature is fabricated from a material of the waveguide substrate. The waveguide substrate may also include at least one output alignment feature within the input edge adjacent to the output end of the at least one waveguide, wherein the at least one output alignment feature is fabricated from the material of the waveguide substrate.
    Type: Application
    Filed: September 24, 2020
    Publication date: January 21, 2021
    Inventors: Alan Frank Evans, Micah Colen Isenhour, Christopher Paul Lewallen, James Scott Sutherland
  • Publication number: 20210011229
    Abstract: Waveguide substrate, waveguide substrate assemblies and methods of fabricating waveguide substrates having various waveguide routing schemes are disclosed. In one embodiment, a waveguide substrate includes a first surface and a second surface, and a plurality of waveguides within the waveguide substrate. The plurality of waveguides defines a plurality of inputs at the first surface. A subset of the plurality of waveguides extends to the second surface to at least partially define a plurality of outputs at the second surface. In one waveguide routing scheme, at least one branching waveguide extends between one of the first surface and the second surface to a surface other than the first surface and the second surface. Another waveguide routing scheme arranges the plurality of waveguides into optical receive-transmit pairs for duplex pairing of optical signals.
    Type: Application
    Filed: September 24, 2020
    Publication date: January 14, 2021
    Inventors: Alan Frank Evans, Christian Fiebig, Claudio Mazzali, James Scott Sutherland
  • Patent number: 10782474
    Abstract: Detachable optical connectors including a connector support for optical chips and methods of their fabrication are disclosed. In one embodiment, an optical assembly includes an optical chip including a surface, an edge extending from the surface, and at least one chip waveguide proximate the surface and terminating at the edge. The optical assembly further includes a waveguide support having a chip coupling surface, and at least one waveguide disposed within the waveguide support and terminating at the chip coupling surface, wherein the chip coupling surface is coupled to the edge of the optical chip such that the at least one waveguide within the waveguide support is optically coupled to the at least one chip waveguide of the optical chip. The optical assembly further includes a connector support having a first portion coupled to the optical chip, and a second portion coupled to the waveguide support.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: September 22, 2020
    Assignee: Corning Research & Development Corporation
    Inventors: Lars Martin Otfried Brusberg, Douglas Llewellyn Butler, Michael de Jong, Alan Frank Evans, Andreas Matiss, James Scott Sutherland
  • Publication number: 20200241220
    Abstract: Optical assemblies, interconnection substrates and methods of forming optical links are disclosed. In one embodiment, an optical assembly includes a first waveguide substrate, a second waveguide substrate, and an interconnection substrate having a first end face, a second end face, and a laser written waveguide. The first waveguide substrate is coupled to the first end face of the interconnection substrate, and the first waveguide is optically coupled to the laser written waveguide. The laser written waveguide terminates at the second end face of the interconnection substrate. The second waveguide substrate is coupled to the second end face of the interconnection substrate such that the second waveguide is optically coupled to the laser written waveguide at the second end face.
    Type: Application
    Filed: April 14, 2020
    Publication date: July 30, 2020
    Inventor: Alan Frank Evans
  • Publication number: 20200132936
    Abstract: The methods disclosed herein include forming an expanded core in an optical fiber with a glass core having a core dopant and a core outer surface, and a glass cladding immediately surrounding the core and having a flat glass-portion surface closest to the core outer surface at a first core spacing S1. The methods include applying heat to a section of the optical fiber to cause the glass core to expand toward the flat glass-portion surface due to thermal diffusion of the core dopant. The methods also include terminating the application of heat to define the expanded core in the heated section of the optical fiber. The expanded core defines an evanescent coupling region having a second core spacing 0?S2<S1 and an adiabatic transition region between the core and the evanescent coupling region of the expanded core.
    Type: Application
    Filed: October 31, 2018
    Publication date: April 30, 2020
    Inventors: Alan Frank Evans, Davide Domenico Fortusini, Ming-Jun Li, Aramais Robert Zakharian
  • Patent number: 10545290
    Abstract: A fiber to waveguide coupler is provided that includes an optical fiber having a core and a cladding. The cladding includes an inner cladding and an outer cladding with a polymer. At least one of the core and inner cladding defines a substantially flat surface parallel with an axis of the optical fiber. The optical fiber defines a stripped portion substantially free of outer cladding configured to expose the at least one substantially flat surface of the core or inner cladding. A waveguide is configured to be evanescently coupled with the exposed at least one substantially flat surface of the core or inner cladding.
    Type: Grant
    Filed: January 13, 2017
    Date of Patent: January 28, 2020
    Assignee: Corning Incorporated
    Inventors: Kevin Wallace Bennett, Alan Frank Evans, Ming-Jun Li, Aramais Robert Zakharian
  • Patent number: 10527806
    Abstract: The glass-based ferrules include a glass substrate and two spaced-apart guide tubes, which can also be made of glass. The guide tubes include bores sized to receive guide pins from another ferrule. The ferrule can be used to form an optical interconnection device in the form of a waveguide connector that includes a planar lightwave circuit that supports multiple waveguides. The ferrule can also be used to form an optical interconnection device in the form of a fiber connector that includes a support substrate and an array of optical fibers supported thereby. The waveguide connector and fiber connector when mated form an integrated photonic device. Methods of forming the ferrule components, the ferrules and the optical interconnection devices are also disclosed.
    Type: Grant
    Filed: June 4, 2019
    Date of Patent: January 7, 2020
    Assignee: Corning Research & Development Corporation
    Inventors: Douglas Llewellyn Butler, Michael de Jong, Alan Frank Evans, Robin May Force, James Scott Sutherland
  • Publication number: 20190391350
    Abstract: An integrated electrical and optoelectronic package comprises an optical subassembly for the conversion of data between an optical and electrical format, an electronic chip including an integrated electric circuit for processing the data in the electrical format and an interposer. The interposer is configured as a supporting substrate to support the optical subassembly and the electronic chip. An optical connector may be coupled to the package. The optical subassembly comprises an optical adaptor used as an interface between a ferrule of the optical connector and an optoelectronic chip of the optical subassembly. Optical fibers of the optical cable are aligned to optical waveguides of the optoelectronic chip by at least one alignment pin of the optical adaptor.
    Type: Application
    Filed: August 28, 2019
    Publication date: December 26, 2019
    Inventors: Alan Frank Evans, Andreas Matiss, Michael Wimmer
  • Patent number: 10514506
    Abstract: An optical coupler that provides evanescent optical coupling includes an optical fiber and a waveguide. The optical fiber has a glass core, a glass inner cladding surrounding the glass core, and a polymeric outer cladding surrounding the glass inner cladding. The glass core and glass inner cladding define for the fiber a glass portion, which can be exposed at one end of the fiber by removing a portion of the polymeric outer cladding. The glass portion has a glass-portion surface. The waveguide has a waveguide core and a surface, and can be part of a photonic device. The glass portion of the fiber is interfaced with the waveguide to establish evanescent coupling between the fiber and the waveguide. Alignment features are used to facilitate aligning the fiber core to the waveguide core during the interfacing process to ensure suitable efficiency of the evanescent coupling.
    Type: Grant
    Filed: January 31, 2018
    Date of Patent: December 24, 2019
    Assignee: Corning Optical Communications LLC
    Inventors: Lars Martin Otfried Brusberg, Douglas Llewellyn Butler, Alan Frank Evans, Ming-Jun Li, James Scott Sutherland
  • Patent number: 10488602
    Abstract: An optical interface device for a photonic integrated system includes a plug and a receptacle. The receptacle is operably arranged on a PIC that supports waveguides. The plug operably supports optical fibers. The receptacle and plug are configured to operably engage to establish optical communication between the optical fibers and the waveguides. A tab on the receptacle is configured to constrain longitudinal motion while allowing for lateral motion of the receptacle to adjust its position relative to the PIC to optimize alignment. The plug can include a spacer sized to fit within a recess defined by the tab to further facilitate alignment. The plug can also include lenses to establish the optical communication between the optical fibers and the waveguides. The receptacle and plug can be engaged and disengaged in a manner similar to conventional electrical connectors.
    Type: Grant
    Filed: January 8, 2019
    Date of Patent: November 26, 2019
    Assignee: Corning Optical Communications LLC
    Inventor: Alan Frank Evans
  • Publication number: 20190302376
    Abstract: The glass-based ferrules include a glass substrate and two spaced-apart guide tubes, which can also be made of glass. The guide tubes include bores sized to receive guide pins from another ferrule. The ferrule can be used to form an optical interconnection device in the form of a waveguide connector that includes a planar lightwave circuit that supports multiple waveguides. The ferrule can also be used to form an optical interconnection device in the form of a fiber connector that includes a support substrate and an array of optical fibers supported thereby. The waveguide connector and fiber connector when mated form an integrated photonic device. Methods of forming the ferrule components, the ferrules and the optical interconnection devices are also disclosed.
    Type: Application
    Filed: June 4, 2019
    Publication date: October 3, 2019
    Inventors: Douglas Llewellyn Butler, Michael de Jong, Alan Frank Evans, Robin May Force, James Scott Sutherland
  • Publication number: 20190235171
    Abstract: An optical coupler that provides evanescent optical coupling includes an optical fiber and a waveguide. The optical fiber has a glass core, a glass inner cladding surrounding the glass core, and a polymeric outer cladding surrounding the glass inner cladding. The glass core and glass inner cladding define for the fiber a glass portion, which can be exposed at one end of the fiber by removing a portion of the polymeric outer cladding. The glass portion has a glass-portion surface. The waveguide has a waveguide core and a surface, and can be part of a photonic device. The glass portion of the fiber is interfaced with the waveguide to establish evanescent coupling between the fiber and the waveguide. Alignment features are used to facilitate aligning the fiber core to the waveguide core during the interfacing process to ensure suitable efficiency of the evanescent coupling.
    Type: Application
    Filed: January 31, 2018
    Publication date: August 1, 2019
    Inventors: Lars Martin Otfried Brusberg, Douglas Llewellyn Butler, Alan Frank Evans, Ming-Jun Li, James Scott Sutherland
  • Patent number: 10345535
    Abstract: The glass-based ferrules include a glass substrate and two spaced-apart guide tubes, which can also be made of glass. The guide tubes include bores sized to receive guide pins from another ferrule. The ferrule can be used to form an optical interconnection device in the form of a waveguide connector that includes a planar lightwave circuit that supports multiple waveguides. The ferrule can also be used to form an optical interconnection device in the form of a fiber connector that includes a support substrate and an array of optical fibers supported thereby. The waveguide connector and fiber connector when mated form an integrated photonic device. Methods of forming the ferrule components, the ferrules and the optical interconnection devices are also disclosed.
    Type: Grant
    Filed: March 13, 2018
    Date of Patent: July 9, 2019
    Assignee: Corning Research & Development Corporation
    Inventors: Douglas Llewellyn Butler, Michael de Jong, Alan Frank Evans, Robin May Force, James Scott Sutherland
  • Patent number: 10324260
    Abstract: Embodiments of an optical assembly and methods of making it are provided. The optical assembly includes a first waveguide, a second waveguide, and an optical adhesive for transmitting optical signals between the first waveguide and the second waveguide. The adhesive includes about 20% to about 60% by volume of first monomers. The first monomers have at least two acrylate or methacrylate groups. The optical adhesive also includes about 40% to about 80% by volume of second monomers. The second monomers have at least one fluorine atom and at least one acrylate or methacrylate group. The optical adhesive has a refractive index of from about 1.40 to about 1.55, and in the temperature range of about 10° C. to about 85° C., the refractive index of the optical adhesive has a thermal drift dn/dT of less than the absolute magnitude of |4×10?4/° C.| and the sign of that value is negative.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: June 18, 2019
    Assignee: Corning Research & Development Corporation
    Inventors: Alan Frank Evans, Shawn Michael O'Malley, Aramais Robert Zakharian
  • Publication number: 20190146162
    Abstract: An optical interface device for a photonic integrated system includes a plug and a receptacle. The receptacle is operably arranged on a PIC that supports waveguides. The plug operably supports optical fibers. The receptacle and plug are configured to operably engage to establish optical communication between the optical fibers and the waveguides. A tab on the receptacle is configured to constrain longitudinal motion while allowing for lateral motion of the receptacle to adjust its position relative to the PIC to optimize alignment. The plug can include a spacer sized to fit within a recess defined by the tab to further facilitate alignment. The plug can also include lenses to establish the optical communication between the optical fibers and the waveguides. The receptacle and plug can be engaged and disengaged in a manner similar to conventional electrical connectors.
    Type: Application
    Filed: January 8, 2019
    Publication date: May 16, 2019
    Applicant: Corning Optical Communications LLC
    Inventor: Alan Frank Evans
  • Patent number: 10288812
    Abstract: Disclosed herein is a fiber optic-to-waveguide coupling assembly with an overlap for edge coupling. The fiber optic-to-waveguide coupling assembly includes a first coupler having a substrate and at least one data fiber, and an interposer with at least one waveguide. A first coupler overlap portion of the substrate is positionable proximate a first interposer overlap portion of the interposer to form a first overlap therebetween to align the at least one data fiber with the at least one waveguide. The substrate and the interposer may each include complementary alignment features to further align the at least one data fiber and the at least one waveguide. The fiber optic-to-waveguide coupling assembly provides simple and accurate alignment with simplified manufacture and assembly.
    Type: Grant
    Filed: June 15, 2018
    Date of Patent: May 14, 2019
    Assignee: Corning Incorporated
    Inventors: Alan Frank Evans, Davide Domenico Fortusini, Qijun Xiao
  • Publication number: 20190094460
    Abstract: Detachable optical connectors including a connector support for optical chips and methods of their fabrication are disclosed. In one embodiment, an optical assembly includes an optical chip including a surface, an edge extending from the surface, and at least one chip waveguide proximate the surface and terminating at the edge. The optical assembly further includes a waveguide support having a chip coupling surface, and at least one waveguide disposed within the waveguide support and terminating at the chip coupling surface, wherein the chip coupling surface is coupled to the edge of the optical chip such that the at least one waveguide within the waveguide support is optically coupled to the at least one chip waveguide of the optical chip. The optical assembly further includes a connector support having a first portion coupled to the optical chip, and a second portion coupled to the waveguide support.
    Type: Application
    Filed: November 21, 2018
    Publication date: March 28, 2019
    Inventors: Lars Martin Otfried Brusberg, Douglas Llewellyn Butler, Michael de Jong, Alan Frank Evans, Andreas Matiss, James Scott Sutherland
  • Patent number: 10228520
    Abstract: An optical interface device for a photonic integrated system includes a plug and a receptacle. The receptacle is operably arranged on a PIC that supports waveguides. The plug operably supports optical fibers. The receptacle and plug are configured to operably engage to establish optical communication between the optical fibers and the waveguides. A tab on the receptacle is configured to constrain longitudinal motion while allowing for lateral motion of the receptacle to adjust its position relative to the PIC to optimize alignment. The plug can include a spacer sized to fit within a recess defined by the tab to further facilitate alignment. The plug can also include lenses to establish the optical communication between the optical fibers and the waveguides. The receptacle and plug can be engaged and disengaged in a manner similar to conventional electrical connectors.
    Type: Grant
    Filed: August 30, 2016
    Date of Patent: March 12, 2019
    Assignee: Corning Optical Communications LLC
    Inventor: Alan Frank Evans
  • Publication number: 20190064454
    Abstract: Ferrule assemblies and coupling apparatus as used to form optical interface devices for photonics systems are disclosed. The ferrule assemblies include a ferrule made of a glass substrate and a pair of spaced apart alignment members, which can be made of a glass or a polymer. The ferrule assembly supports an array of optical fibers. The coupling apparatus is incorporated into a photonic integrated circuit assembly that has optical waveguides and that includes spaced apart alignment members, which can also be made of a glass or a polymer. The ferrule assembly and the coupling apparatus have complementary alignment features that align the optical waveguides and the optical fibers when forming the optical interface device. The alignment members have a geometry that allows them to be used to form both the ferrule assemblies and the coupling apparatus.
    Type: Application
    Filed: October 25, 2018
    Publication date: February 28, 2019
    Inventor: Alan Frank Evans
  • Publication number: 20190064450
    Abstract: Methods of forming glass-based ferrules and glass-based coupling apparatus for use in forming optical interface devices for photonic systems are disclosed and include forming glass or polymer alignment members that each includes an alignment feature. Methods of forming the alignment members are also disclosed, and include glass drawing and molding processes. The alignment members can be attached in a spaced apart configuration to the surface of a glass support substrate to form a ferrule. The alignment members can also be attached to the surface of a photonic integrated circuit to form a coupling apparatus. The alignment members can be made in a way that allows for same alignment members to be used to form either the ferrules or the coupling apparatus.
    Type: Application
    Filed: October 25, 2018
    Publication date: February 28, 2019
    Inventor: Alan Frank Evans