Patents by Inventor Alan J. Korman

Alan J. Korman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200299400
    Abstract: Provided herein are heavy chain constant regions (referred to as “modified heavy chain constant regions”), or functionally equivalent fragments thereof, that enhance biological properties of antibodies relative to the same antibodies in unmodified form. An exemplary modified heavy chain constant region includes an IgG2 hinge and three constant domains (i.e., CH1, CH2, and CH3 domains), wherein one or more of the constant region domains are of a non-IgG2 isotype (e.g., IgG1, IgG3 or IgG4). The heavy chain constant region may comprise wildtype human IgG domain sequences, or variants of these sequences. Also provided herein are methods for enhancing certain biological properties of antibodies that comprise a non-IgG2 hinge, such as internalization, agonism and antagonism, wherein the method comprises replacing the non-IgG2 hinge of the antibody with an IgG2 hinge.
    Type: Application
    Filed: May 24, 2018
    Publication date: September 24, 2020
    Applicant: BRISTOL-MYERS SQUIBB COMPANY
    Inventors: Nils LONBERG, Alan J. KORMAN, Mark J. SELBY, Bryan C. BARNHART, Aaron P. YAMNIUK, Mohan SRINIVASAN, Karla A. HENNING, Michelle Minhua HAN, Ming LEI, Liang SCHWEIZER, Sandra V. HATCHER, Arvind RAJPAL
  • Publication number: 20200268901
    Abstract: Provided herein are heavy chain constant regions (referred to as “modified heavy chain constant regions”), or functionally equivalent fragments thereof, that enhance biological properties of antibodies relative to the same antibodies in unmodified form. An exemplary modified heavy chain constant region includes an IgG2 hinge and three constant domains (i.e., CH1, CH2, and CH3 domains), wherein one or more of the constant region domains are of a non-IgG2 isotype (e.g., IgG1, IgG3 or IgG4). The heavy chain constant region may comprise wildtype human IgG domain sequences, or variants of these sequences. Also provided herein are methods for enhancing certain biological properties of antibodies that comprise a non-IgG2 hinge, such as internalization, agonism and antagonism, wherein the method comprises replacing the non-IgG2 hinge of the antibody with an IgG2 hinge.
    Type: Application
    Filed: April 15, 2020
    Publication date: August 27, 2020
    Inventors: Nils LONBERG, Alan J. KORMAN, Mark J. SELBY, Bryan C. BARNHART, Aaron P. YAMNIUK, Mohan SRINIVASAN, Karla A. HENNING, Michelle Minhua HAN, Ming LEI, Liang SCHWEIZER, Sandra V. HATCHER, Arvind RAJPAL
  • Publication number: 20200231671
    Abstract: The present disclosure provides isolated monoclonal antibodies that specifically bind to LAG-3 with high affinity, particularly human monoclonal antibodies. Preferably, the antibodies bind human LAG-3. In certain embodiments, the antibodies bind both human and monkey LAG-3 but do not bind mouse LAG-3. The invention provides anti-LAG-3 antibodies that can inhibit the binding of LAG-3 to MHC Class II molecules and that can stimulate antigen-specific T cell responses. Nucleic acid molecules encoding the antibodies of the invention, expression vectors, host cells and methods for expressing the antibodies of the invention are also provided. Immunoconjugates, bispecific molecules and pharmaceutical compositions comprising the antibodies of the invention are also provided. This disclosure also provides methods for detecting LAG-3, as well as methods for treating stimulating immune responses using an anti-LAG-3 antibody of the invention.
    Type: Application
    Filed: December 20, 2019
    Publication date: July 23, 2020
    Applicant: E.R. Squibb & Sons, L.L.C.
    Inventors: Kent B. THUDIUM, Mark J. SELBY, Kyra D. ZENS, Mark YAMANAKA, Alan J. KORMAN, Heidi N. LEBLANC
  • Publication number: 20200207816
    Abstract: The present disclosure provides a method for enhancing the anti-tumor efficacy of an Fc fusion protein which binds specifically to a target, e.g., a co-inhibitory or co-stimulatory receptor of ligand, on a T cell in a subject afflicted with a cancer or a disease caused by an infectious agent and alters the activity of the immunomodulatory target, thereby potentiating an endogenous immune response against cells of the cancer or the infectious agent, wherein the method comprises selecting, designing or modifying the Fc region of the Fc fusion protein so as to enhance the binding of said Fc region to an activating Fc receptor (FcR). The disclosure also provides an Fc fusion protein produced by said method and its use in treating a subject afflicted with a cancer or a disease caused by an infectious agent.
    Type: Application
    Filed: January 8, 2020
    Publication date: July 2, 2020
    Inventors: John J. ENGELHARDT, Alan J. KORMAN, Michael QUIGLEY, Mark J. SELBY, Changyu WANG
  • Publication number: 20200199226
    Abstract: The present disclosure provides isolated monoclonal antibodies (e.g., humanized and human monoclonal antibodies), or antigen-binding fragments thereof, that specifically bind to human natural killer cell inhibitory receptor group 2A (NKG2A) protein with high affinity and exhibit therapeutically desirable functional properties, such as for the treatment of, for example, cancer. Immunoconjugates, bispecific molecules, and pharmaceutical compositions comprising the anti-NKG2A antibodies of the invention are also provided. Nucleic acid molecules encoding the antibodies, expression vectors, host cells, and methods of treatment of, for example, cancer using the antibodies are further provided. Combination therapy, in which an anti-NKG2A antibody in the present disclosure is co-administered with at least one additional agent such as another antibody (e.g., anti-PD-1, anti-PD-L1, and/or anti-CTLA-4 antibodies), is also provided.
    Type: Application
    Filed: November 14, 2019
    Publication date: June 25, 2020
    Inventors: Natalie Bezman, Alan J. Korman, Shrikant Deshpande, Amy D. Jhatakia, Richard Y. Huang, Guodong Chen, Ginger C. Rakestraw, Karla Ann Henning, Vangipuram S. Rangan, Christine Bee, Xiang Shao
  • Patent number: 10690674
    Abstract: Provided herein are diagnostic antibodies that bind to glucocorticoid-induced tumor necrosis factor receptor (GITR). Such antibodies are useful for methods of detecting the expression of GITR in biological samples, for example, tumor tissue, and identifying a cancer patient likely to respond to anti-GITR immunotherapy or predicting whether a cancer patient will respond to anti-GITR immunotherapy.
    Type: Grant
    Filed: June 2, 2016
    Date of Patent: June 23, 2020
    Assignee: BRISTOL-MYERS SQUIBB COMPANY
    Inventors: Xi-Tao Wang, Olufemi A. Adelakun, Anne C. Lewin, Alan J. Korman, Mark J. Selby, Changyu Wang, Haichun Huang, Karla A. Henning, Nils Lonberg, Mohan Srinivasan, Michelle Minhua Han, Guodong Chen, Richard Y. Huang, Indrani Chakraborty, Susan Chien-Szu Wong, Huiming Li
  • Publication number: 20200190186
    Abstract: Provided herein are antibodies, or antigen-binding portions thereof, that bind to T-cell immunoglobulin and mucin-domain containing-3 (TIM3) protein. Also provided are uses of these antibodies, or antigen-binding portions thereof, in therapeutic applications, such as treatment of cancer. Further provided are cells that produce the antibodies, or antigen-binding portions thereof, polynucleotides encoding the heavy and/or light chain regions of the antibodies, or antigen-binding portions thereof, and vectors comprising the polynucleotides encoding the heavy and/or light chain regions of the antibodies, or antigen-binding portions thereof.
    Type: Application
    Filed: November 27, 2019
    Publication date: June 18, 2020
    Applicant: Bristol-Myers Squibb Company
    Inventors: Xiao Min SCHEBYE, Mark J. SELBY, Michelle Minhua HAN, Christine BEE, Andy X. DENG, Anan CHUNTHARAPAI, Brigitte DEVAUX, Huiming LI, Paul O. SHEPPARD, Alan J. KORMAN, Daniel F. ARDOUREL, Ekaterina DEYANOVA, Richard HUANG, Guodong CHEN, Michelle KUHNE, Hong-An TRUONG
  • Patent number: 10683357
    Abstract: Provided herein are antibodies, or antigen binding portions thereof, that bind to OX40. Also provided are uses of these proteins in therapeutic applications, such as in the treatment of cancer. Further provided are cells that produce the antibodies, polynucleotides encoding the heavy and/or light chain variable region of the antibodies, and vectors comprising the polynucleotides encoding the heavy and/or light chain variable region of the antibodies.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: June 16, 2020
    Assignee: Bristol-Myers Squibb Company
    Inventors: Zhehong Cai, Indrani Chakraborty, Marie-Michelle Navarro Garcia, Thomas D. Kempe, Alan J. Korman, Alexander T. Kozhich, Hadia Lemar, Mark Maurer, Christina Maria Milburn, Michael Quigley, Xiang Shao, Mohan Srinivasan, Kent Thudium, Susan Chien-Szu Wong, Jochem Gokemeijer, Xi-Tao Wang, Han Chang, Patrick Guirnalda
  • Patent number: 10653791
    Abstract: Provided herein are heavy chain constant regions (referred to as “modified heavy chain constant regions”), or functionally equivalent fragments thereof, that enhance biological properties of antibodies relative to the same antibodies in unmodified form. An exemplary modified heavy chain constant region includes an IgG2 hinge and three constant domains (i.e., CH1, CH2, and CH3 domains), wherein one or more of the constant region domains are of a non-IgG2 isotype (e.g., IgG1, IgG3 or IgG4). The heavy chain constant region may comprise wildtype human IgG domain sequences, or variants of these sequences. Also provided herein are methods for enhancing certain biological properties of antibodies that comprise a non-IgG2 hinge, such as internalization, agonism and antagonism, wherein the method comprises replacing the non-IgG2 hinge of the antibody with an IgG2 hinge.
    Type: Grant
    Filed: November 19, 2015
    Date of Patent: May 19, 2020
    Assignee: BRISTOL-MYERS SQUIBB COMPANY
    Inventors: Nils Lonberg, Alan J. Korman, Mark J. Selby, Bryan C. Barnhart, Aaron P. Yamniuk, Mohan Srinivasan, Karla A. Henning, Michelle Minhua Han, Ming Lei, Liang Schweizer, Sandra V. Hatcher, Arvind Rajpal
  • Publication number: 20200138945
    Abstract: The present invention provides isolated monoclonal antibodies, particularly human monoclonal antibodies, that specifically bind to PD-1 with high affinity. Nucleic acid molecules encoding the antibodies of the invention, expression vectors, host cells and methods for expressing the antibodies of the invention are also provided. Immunoconjugates, bispecific molecules and pharmaceutical compositions comprising the antibodies of the invention are also provided. The invention also provides methods for detecting PD-1, as well as methods for treating various diseases, including cancer and infectious diseases, using anti-PD-1 antibodies. The present invention further provides methods for using a combination immunotherapy, such as the combination of anti-CTLA-4 and anti-PD-1 antibodies, to treat hyperproliferative disease, such as cancer. The invention also provides methods for altering adverse events related to treatment with such antibodies individually.
    Type: Application
    Filed: October 11, 2019
    Publication date: May 7, 2020
    Applicants: E.R. SQUIBB & SONS, L.L.C., Ono Pharmaceutical Co., LTD.
    Inventors: Alan J. Korman, Mohan Srinivasan, Changyu Wang, Mark J. Selby, Bingliang Chen, Josephine M. Cardarelli, Haichun Huang
  • Publication number: 20200115463
    Abstract: Provided herein are antibodies, or antigen binding portions thereof, that bind to glucocorticoid-inducible TNF receptor (GITR). Also provided are uses of these proteins in therapeutic applications, such as in the treatment of cancer. Further provided are cells that produce the antibodies, polynucleotides encoding the heavy and/or light chain variable region of the antibodies, and vectors comprising the polynucleotides encoding the heavy and/or light chain variable region of the antibodies.
    Type: Application
    Filed: October 25, 2019
    Publication date: April 16, 2020
    Inventors: Changyu WANG, Nils LONBERG, Alan J. KORMAN, Mark J. SELBY, Mohan SRINIVASAN, Karla A. HENNING, Michelle Minhua HAN, Guodong CHEN, Richard HUANG, Indrani CHAKRABORTY, Haichun HUANG, Susan WONG, Huiming LI
  • Publication number: 20200079848
    Abstract: The present application relates to antibodies specifically binding to immunoglobulin-like transcript 4 (ILT4), which is also known as LILRB2, LIR2, MIR10, and CD85d, and corresponding nucleic acids, host cells, compositions, and uses. In some embodiments, the antibodies bind specifically to human ILT4, but do not significantly bind to ILT2, ILT3, or ILT5, or to other members of the LILRA or LILRB families.
    Type: Application
    Filed: July 9, 2019
    Publication date: March 12, 2020
    Applicants: Five Prime Therapeutics, Inc., Bristol-Myers Squibb Company
    Inventors: Xiao Min Schebye, Diana Yuhui Chen, Andrew Rankin, Xiaodi Deng, Joseph Toth, Linda Liang, Michelle Minhua Han, Christine Bee, Hong-An Truong, Mark J. Selby, Nils Lonberg, Guodong Chen, Richard Y. Huang, Ekaterina G. Deyanova, Alan J. Korman
  • Publication number: 20200079865
    Abstract: Provided herein are antibodies, or antigen binding portions thereof, that bind to glucocorticoid-inducible TNF receptor (GITR). Also provided are uses of these proteins in therapeutic applications, such as in the treatment of cancer. Further provided are cells that produce the antibodies, polynucleotides encoding the heavy and/or light chain variable region of the antibodies, and vectors comprising the polynucleotides encoding the heavy and/or light chain variable region of the antibodies.
    Type: Application
    Filed: September 23, 2019
    Publication date: March 12, 2020
    Inventors: Changyu WANG, Nils LONBERG, Alan J. KORMAN, Mark J. SELBY, Mohan SRINIVASAN, Karla HENNING, Michelle Minhua HAN, Guodong CHEN, Richard HUANG, Indrani CHAKRABORTY, Haichun HUANG, Susan WONG, Huiming LI
  • Publication number: 20200062845
    Abstract: Provided are methods for clinical treatment of tumors (e.g., advanced solid tumors) using an anti-LAG-3 antibody in combination with an anti-PD-1 antibody.
    Type: Application
    Filed: April 5, 2019
    Publication date: February 27, 2020
    Applicant: Bristol-Myers Squibb Company
    Inventors: Alan J. Korman, Nils Lonberg, David J. Fontana, Andres A. Gutierrez, Mark J. Selby, Katherine Lewis
  • Publication number: 20200062848
    Abstract: The present disclosure provides isolated monoclonal antibodies, particularly human monoclonal antibodies that specifically bind to PD-L1 with high affinity. Nucleic acid molecules encoding the antibodies of this disclosure, expression vectors, host cells and methods for expressing the antibodies of this disclosure are also provided. Immunoconjugates, bispecific molecules and pharmaceutical compositions comprising the antibodies of the invention are also provided. The disclosure also provides methods for detecting PD-L1, as well as methods for treating various diseases, including cancer and infectious diseases, using anti-PD-L1 antibodies.
    Type: Application
    Filed: June 21, 2019
    Publication date: February 27, 2020
    Applicant: E.R. Squibb & Sons, L. L. C.
    Inventors: Alan J. KORMAN, Mark J. SELBY, Changyu WANG, Mohan SRINIVASAN, David B. PASSMORE, Haichun HUANG, Haibin CHEN
  • Publication number: 20200055936
    Abstract: The present application relates to antibodies specifically binding to the V-domain immunoglobulin-containing suppressor of T-cell activation (VISTA) at acidic pH and their use in cancer treatment. In some embodiments, the antibodies bind specifically to human VISTA at acidic pH, but do not significantly bind to human VISTA at neutral or physiological pH.
    Type: Application
    Filed: March 13, 2018
    Publication date: February 20, 2020
    Applicants: Five Prime Therapeutics, Inc., Bristol-Myers Squibb Company
    Inventors: Robert J. Johnston, Arvind Rajpal, Paul O. Sheppard, Luis Borges, Andrew Rankin, Keith Sadoon Bahjat, Alan J. Korman, Andy X. Deng, Lin Hui Su, Ginger Rakestraw
  • Publication number: 20200030425
    Abstract: The present invention provides isolated monoclonal antibodies (e.g., humanized and human monoclonal antibodies) that bind to human Inducible T Cell COStimulator (ICOS) and exhibit therapeutically desirable functional properties, e.g., the ability to stimulate human ICOS activity. Nucleic acid molecules encoding the antibodies of the invention, expression vectors, host cells, and methods for expressing the antibodies of the invention are also provided. Immunoconjugates, bispecific molecules, and pharmaceutical compositions comprising the antibodies of the invention are also provided. The antibodies of the invention can be used, for example, as an agonist to stimulate or enhance an immune response in a subject, e.g., antigen-specific T cell responses against a tumor or viral antigen. The antibodies of the invention can also be used in combination with other antibodies (e.g., PD-1, PD-L1, and/or CTLA-4 antibodies) to treat, for example, cancer.
    Type: Application
    Filed: October 14, 2019
    Publication date: January 30, 2020
    Inventors: John J. ENGELHARDT, Mark J. SELBY, Alan J. KORMAN, Mary Diane FEINGERSH, Brenda L. STEVENS
  • Patent number: 10533052
    Abstract: Provided herein are antibodies, or antigen-binding portions thereof, that bind to T-cell immunoglobulin and mucin-domain containing-3 (TIM3) protein. Also provided are uses of these antibodies, or antigen-binding portions thereof, in therapeutic applications, such as treatment of cancer. Further provided are cells that produce the antibodies, or antigen-binding portions thereof, polynucleotides encoding the heavy and/or light chain regions of the antibodies, or antigen-binding portions thereof, and vectors comprising the polynucleotides encoding the heavy and/or light chain regions of the antibodies, or antigen-binding portions thereof.
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: January 14, 2020
    Assignee: Bristol-Myers Squibb Company
    Inventors: Xiao Min Schebye, Mark J. Selby, Michelle Minhua Han, Christine Bee, Andy X. Deng, Anan Chuntharapai, Brigitte Devaux, Huiming Li, Paul O. Sheppard, Alan J. Korman, Daniel F. Ardourel, Ekaterina Deyanova, Richard Huang, Guodong Chen, Michelle Kuhne, Hong-An Truong
  • Publication number: 20190382491
    Abstract: This disclosure provides a method for treating a subject afflicted with a cancer, which method comprises administering to the subject therapeutically effective amounts of: (a) an antibody or an antigen-binding portion thereof that specifically binds to PD-1; and (b) an antibody or an antigen-binding portion thereof that specifically binds to CD 137.
    Type: Application
    Filed: August 1, 2019
    Publication date: December 19, 2019
    Inventors: Maria Jure-Kunkel, David M. Berman, Alan J. Korman, Mark J. Selby, Suba Krishnan
  • Publication number: 20190382490
    Abstract: The present invention provides methods of enhancing immune response to a vaccine using variant forms of anti-CTLA-4 antibodies having enhanced ADCC activity. Variant anti-CTLA-4 antibodies for use in the present invention include nonfucosylated ipilimumab.
    Type: Application
    Filed: February 27, 2018
    Publication date: December 19, 2019
    Inventors: John T. LOFFREDO, Katherine E. LEWIS, Robert F. GRAZIANO, Alan J. KORMAN