Patents by Inventor Alan J. Korman
Alan J. Korman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20230272079Abstract: The present invention provides isolated monoclonal antibodies, particularly human monoclonal antibodies, that specifically bind to PD-1 with high affinity. Nucleic acid molecules encoding the antibodies of the invention, expression vectors, host cells and methods for expressing the antibodies of the invention are also provided. Immunoconjugates, bispecific molecules and pharmaceutical compositions comprising the antibodies of the invention are also provided. The invention also provides methods for detecting PD-1, as well as methods for treating various diseases, including cancer and infectious diseases, using anti-PD-1 antibodies. The present invention further provides methods for using a combination immunotherapy, such as the combination of anti-CTLA-4 and anti-PD-1 antibodies, to treat hyperproliferative disease, such as cancer. The invention also provides methods for altering adverse events related to treatment with such antibodies individually.Type: ApplicationFiled: February 9, 2023Publication date: August 31, 2023Applicants: E.R. SQUIBB & SONS, L.L.C., Ono Pharmaceutical Co., LTD.Inventors: Alan J. KORMAN, Mohan SRINIVASAN, Changyu WANG, Mark J. SELBY, Bingliang CHEN, Josephine M. CARDARELLI, Haichun HUANG
-
Publication number: 20230272100Abstract: Provided herein are antibodies, or antigen binding portions thereof, that bind to OX40. Also provided are uses of these proteins in therapeutic applications, such as in the treatment of cancer. Further provided are cells that produce the antibodies, polynucleotides encoding the heavy and/or light chain variable region of the antibodies, and vectors comprising the polynucleotides encoding the heavy and/or light chain variable region of the antibodies.Type: ApplicationFiled: August 11, 2022Publication date: August 31, 2023Applicant: Bristol-Myers Squibb CompanyInventors: Zhehong CAI, Indrani CHAKRABORTY, Marie-Michelle Navarro GARCIA, Thomas D. KEMPE, Alan J. KORMAN, Alexander T. KOZHICH, Hadia LEMAR, Mark MAURER, Christina Maria MILBURN, Michael QUIGLEY, Xiang SHAO, Mohan SRINIVASAN, Kent THUDIUM, Susan Chien-Szu WONG, Jochem GOKEMEIJER, Xi-Tao WANG, Han CHANG, Patrick GUIRNALDA
-
Publication number: 20230174647Abstract: The present application relates to antibodies specifically binding to immunoglobulin-like transcript 4 (ILT4), which is also known as LILRB2, LIR2, MIR10, and CD85d, and corresponding nucleic acids, host cells, compositions, and uses. In some embodiments, the antibodies bind specifically to human ILT4, but do not significantly bind to ILT2, ILT3, or ILT5, or to other members of the LILRA or LILRB families.Type: ApplicationFiled: June 21, 2022Publication date: June 8, 2023Applicants: Five Prime Therapeutics, Inc., Bristol-Myers Squibb CompanyInventors: Xiao Min Schebye, Diana Yuhui Chen, Andrew Rankin, Xiaodi Deng, Joseph Toth, Linda Liang, Michelle Minhua Han, Christine Bee, Hong-An Truong, Mark J. Selby, Nils Lonberg, Guodong Chen, Richard Y. Huang, Ekaterina G. Deyanova, Alan J. Korman
-
Publication number: 20230111786Abstract: Provided are methods for clinical treatment of malignant tumors (e.g., advanced solid tumors) using a combination of an anti-LAG-3 antibody, an anti-PD-1 antibody, and an immunotherapeutic agent.Type: ApplicationFiled: August 10, 2022Publication date: April 13, 2023Applicant: Bristol-Myers Squibb CompanyInventors: Alan J. KORMAN, Nils LONBERG, Mark J. SELBY, Jeffrey JACKSON
-
Patent number: 11603406Abstract: The present application relates to antibodies specifically binding to the V-domain immunoglobulin-containing suppressor of T-cell activation (VISTA) at acidic pH and their use in cancer treatment. In some embodiments, the antibodies bind specifically to human VISTA at acidic pH, but do not significantly bind to human VISTA at neutral or physiological pH.Type: GrantFiled: March 13, 2018Date of Patent: March 14, 2023Assignees: Five Prime Therapeutics, Inc., Bristol-Myers Squibb CompanyInventors: Robert J. Johnston, Arvind Rajpal, Paul O. Sheppard, Luis Borges, Andrew Rankin, Keith Sadoon Bahjat, Alan J. Korman, Andy X. Deng, Lin Hui Su, Ginger Rakestraw
-
Publication number: 20230061544Abstract: The present disclosure provides isolated monoclonal antibodies, particularly human monoclonal antibodies that specifically bind to PD-L1 with high affinity. Nucleic acid molecules encoding the antibodies of this disclosure, expression vectors, host cells and methods for expressing the antibodies of this disclosure are also provided. Immunoconjugates, bispecific molecules and pharmaceutical compositions comprising the antibodies of the invention are also provided. The disclosure also provides methods for detecting PD-L1, as well as methods for treating various diseases, including cancer and infectious diseases, using anti-PD-L1 antibodies.Type: ApplicationFiled: June 16, 2022Publication date: March 2, 2023Applicant: E.R. Squibb & Sons, L. L. C.Inventors: Alan J. KORMAN, Mark J. SELBY, Changyu WANG, Mohan SRINIVASAN, David B. PASSMORE, Haichun HUANG, Haibin CHEN
-
Patent number: 11591392Abstract: Provided herein are antibodies, or antigen-binding portions thereof, that bind to T-cell immunoglobulin and mucin-domain containing-3 (TIM3) protein. Also provided are uses of these antibodies, or antigen-binding portions thereof, in therapeutic applications, such as treatment of cancer. Further provided are cells that produce the antibodies, or antigen-binding portions thereof, polynucleotides encoding the heavy and/or light chain regions of the antibodies, or antigen-binding portions thereof, and vectors comprising the polynucleotides encoding the heavy and/or light chain regions of the antibodies, or antigen-binding portions thereof.Type: GrantFiled: November 27, 2019Date of Patent: February 28, 2023Assignee: Bristol-Myers Squibb CompanyInventors: Xiao Min Schebye, Mark J. Selby, Michelle Minhua Han, Christine Bee, Andy X. Deng, Anan Chuntharapai, Brigitte Devaux, Huiming Li, Paul O. Sheppard, Alan J. Korman, Daniel F. Ardourel, Ekaterina Deyanova, Richard Huang, Guodong Chen, Michelle Kuhne, Hong-An Truong
-
Publication number: 20230050665Abstract: Provided herein are antibodies, or antigen binding portions thereof, that bind to glucocorticoid-inducible TNF receptor (GITR). Also provided are uses of these proteins in therapeutic applications, such as in the treatment of cancer. Further provided are cells that produce the antibodies, polynucleotides encoding the heavy and/or light chain variable region of the antibodies, and vectors comprising the polynucleotides encoding the heavy and/or light chain variable region of the antibodies.Type: ApplicationFiled: June 30, 2021Publication date: February 16, 2023Inventors: Changyu WANG, Nils LONBERG, Alan J. KORMAN, Mark J. SELBY, Mohan SRINIVASAN, Karla HENNING, Michelle Minhua HAN, Guodong CHEN, Richard HUANG, Indrani CHAKRABORTY, Haichun HUANG, Susan WONG, Huiming LI
-
Publication number: 20230051701Abstract: The present invention provides isolated monoclonal antibodies, particularly human antibodies, that bind to human Cluster of Differentiation 73 (CD73) with high affinity, and inhibit the activity of CD73, and optionally mediate antibody dependent CD73 internalization. Nucleic acid molecules encoding the antibodies of the invention, expression vectors, host cells and methods for expressing the antibodies of the invention are also provided. Immunoconjugates, bispecific molecules and pharmaceutical compositions comprising the antibodies of the invention are also provided. The invention also provides methods for inhibiting the growth of a tumor cell expressing CD73 using the antibodies of the invention, including methods for treating various cancers.Type: ApplicationFiled: May 5, 2022Publication date: February 16, 2023Inventors: Nils Lonberg, Alan J. Korman, Bryan C. Barnhart, Aaron P. Yamniuk, Mohan Srinivasan, Karla A. Henning, Ming Lei, Emanuela Sega, Angela Goodenough, Maria N. Jure-Kunkel, Guodong Chen, John S. Sack, Richard Huang, Martin J. Corbett, Joseph E. Myers, JR., Liang Schweizer, Sandra V. Hatcher, Haichun Huang, Pingping Zhang
-
Patent number: 11529399Abstract: The present invention provides isolated monoclonal antibodies (e.g., humanized and human monoclonal antibodies) that bind to human Inducible T Cell COStimulator (ICOS) and exhibit therapeutically desirable functional properties, e.g., the ability to stimulate human ICOS activity. Nucleic acid molecules encoding the antibodies of the invention, expression vectors, host cells, and methods for expressing the antibodies of the invention are also provided. Immunoconjugates, bispecific molecules, and pharmaceutical compositions comprising the antibodies of the invention are also provided. The antibodies of the invention can be used, for example, as an agonist to stimulate or enhance an immune response in a subject, e.g., antigen-specific T cell responses against a tumor or viral antigen. The antibodies of the invention can also be used in combination with other antibodies (e.g., PD-1, PD-L1, and/or CTLA-4 antibodies) to treat, for example, cancer.Type: GrantFiled: October 14, 2019Date of Patent: December 20, 2022Assignee: Bristol-Myers Squibb CompanyInventors: John J. Engelhardt, Mark J. Selby, Alan J. Korman, Mary Diane Feingersh, Brenda L. Stevens
-
Patent number: 11530267Abstract: The present disclosure provides isolated monoclonal antibodies that specifically bind to LAG-3 with high affinity, particularly human monoclonal antibodies. Preferably, the antibodies bind human LAG-3. In certain embodiments, the antibodies bind both human and monkey LAG-3 but do not bind mouse LAG-3. The invention provides anti-LAG-3 antibodies that can inhibit the binding of LAG-3 to WIC Class II molecules and that can stimulate antigen-specific T cell responses. Nucleic acid molecules encoding the antibodies of the invention, expression vectors, host cells and methods for expressing the antibodies of the invention are also provided. Immunoconjugates, bispecific molecules and pharmaceutical compositions comprising the antibodies of the invention are also provided. This disclosure also provides methods for detecting LAG-3, as well as methods for treating stimulating immune responses using an anti-LAG-3 antibody of the invention.Type: GrantFiled: December 7, 2021Date of Patent: December 20, 2022Assignee: E.R. Squibb & Sons, L.L.C.Inventors: Kent B. Thudium, Mark J. Selby, Kyra D. Zens, Mark Yamanaka, Alan J. Korman, Heidi N. Leblanc
-
Patent number: 11512130Abstract: The present disclosure provides isolated monoclonal antibodies that specifically bind to LAG-3 with high affinity, particularly human monoclonal antibodies. Preferably, the antibodies bind human LAG-3. In certain embodiments, the antibodies bind both human and monkey LAG-3 but do not bind mouse LAG-3. The invention provides anti-LAG-3 antibodies that can inhibit the binding of LAG-3 to MHC Class II molecules and that can stimulate antigen-specific T cell responses. Nucleic acid molecules encoding the antibodies of the invention, expression vectors, host cells and methods for expressing the antibodies of the invention are also provided. Immunoconjugates, bispecific molecules and pharmaceutical compositions comprising the antibodies of the invention are also provided. This disclosure also provides methods for detecting LAG-3, as well as methods for treating stimulating immune responses using an anti-LAG-3 antibody of the invention.Type: GrantFiled: December 7, 2021Date of Patent: November 29, 2022Assignee: E.R. Squibb & Sons, L.L.C.Inventors: Kent B. Thudium, Mark J. Selby, Kyra D. Zens, Mark Yamanaka, Alan J. Korman, Heidi N. Leblanc
-
Patent number: 11466092Abstract: Provided herein are antibodies, or antigen binding portions thereof, that bind to OX40. Also provided are uses of these proteins in therapeutic applications, such as in the treatment of cancer. Further provided are cells that produce the antibodies, polynucleotides encoding the heavy and/or light chain variable region of the antibodies, and vectors comprising the polynucleotides encoding the heavy and/or light chain variable region of the antibodies.Type: GrantFiled: April 13, 2020Date of Patent: October 11, 2022Assignee: Bristol-Myers Squibb CompanyInventors: Zhehong Cai, Indrani Chakraborty, Marie-Michelle Navarro Garcia, Thomas D. Kempe, Alan J. Korman, Alexander T. Kozhich, Hadia Lemar, Mark Maurer, Christina Maria Milburn, Michael Quigley, Xiang Shao, Mohan Srinivasan, Kent Thudium, Susan Chien-Szu Wong, Jochem Gokemeijer, Xi-Tao Wang, Han Chang, Patrick Guirnalda
-
Publication number: 20220281980Abstract: The disclosure provides antibodies that specifically bind human MICA/B and methods of use thereof. In some aspects, the disclosure is directed to methods of treating a cancer in a subject, comprising administering to the subject an anti-MICA/B antibody.Type: ApplicationFiled: January 24, 2022Publication date: September 8, 2022Applicant: Bristol-Myers Squibb CompanyInventors: Michelle Renee KUHNE, Alan J. KORMAN, Haichun HUANG, Yiming YIN, Robert F. GRAZIANO, Natalie A. BEZMAN, Pavel STROP, Richard Y. HUANG, Guodong CHEN, Mohan SRINIVASAN, Peter Sung Keun LEE, Gamze Ozlem CAMDERE
-
Patent number: 11408889Abstract: Provided herein are diagnostic antibodies that bind to glucocorticoid-induced tumor necrosis factor receptor (GITR). Such antibodies are useful for methods of detecting the expression of GITR in biological samples, for example, tumor tissue, and identifying a cancer patient likely to respond to anti-GITR immunotherapy or predicting whether a cancer patient will respond to anti-GITR immunotherapy.Type: GrantFiled: May 8, 2020Date of Patent: August 9, 2022Assignee: BRISTOL-MYERS SQUIBB COMPANYInventors: Xi-Tao Wang, Olufemi A. Adelakun, Anne C. Lewin, Alan J. Korman, Mark J. Selby, Changyu Wang, Haichun Huang, Karla A. Henning, Nils Lonberg, Mohan Srinivasan, Michelle Minhua Han, Guodong Chen, Richard Y. Huang, Indrani Chakraborty, Susan Chien-Szu Wong, Huiming Li
-
Patent number: 11401328Abstract: The present application relates to antibodies specifically binding to immunoglobulin-like transcript 4 (ILT4), which is also known as LILRB2, LIR2, MIR10, and CD85d, and corresponding nucleic acids, host cells, compositions, and uses. In some embodiments, the antibodies bind specifically to human ILT4, but do not significantly bind to ILT2, ILT3, or ILT5, or to other members of the LILRA or LILRB families.Type: GrantFiled: July 9, 2019Date of Patent: August 2, 2022Assignees: Five Prime Therapeutics, Inc., Bristol-Myers Squibb CompanyInventors: Xiao Min Schebye, Diana Yuhui Chen, Andrew Rankin, Xiaodi Deng, Joseph Toth, Linda Liang, Michelle Minhua Han, Christine Bee, Hong-An Truong, Mark J. Selby, Nils Lonberg, Guodong Chen, Richard Y. Huang, Ekaterina G. Deyanova, Alan J. Korman
-
Publication number: 20220204618Abstract: The present disclosure provides isolated monoclonal antibodies (e.g., humanized and human monoclonal antibodies), or antigen-binding fragments thereof, that specifically bind to human natural killer cell inhibitory receptor group 2A (NKG2A) protein with high affinity and exhibit therapeutically desirable functional properties, such as for the treatment of, for example, cancer. Immunoconjugates, bispecific molecules, and pharmaceutical compositions comprising the anti-NKG2A antibodies of the invention are also provided. Nucleic acid molecules encoding the antibodies, expression vectors, host cells, and methods of treatment of, for example, cancer using the antibodies are further provided. Combination therapy, in which an anti-NKG2A antibody in the present disclosure is co-administered with at least one additional agent such as another antibody (e.g., anti-PD-1, anti-PD-L1, and/or anti-CTLA-4 antibodies), is also provided.Type: ApplicationFiled: February 11, 2022Publication date: June 30, 2022Inventors: Natalie Bezman, Alan J. Korman, Shrikant Deshpande, Amy D. Jhatakia, Richard Y. Huang, Guodong Chen, Ginger C. Rakestraw, Karla Ann Henning, Vangipuram S. Rangan, Christine Bee, Xiang Shao
-
Publication number: 20220204612Abstract: The present disclosure provides isolated monoclonal antibodies that specifically bind to LAG-3 with high affinity, particularly human monoclonal antibodies. Preferably, the antibodies bind human LAG-3. In certain embodiments, the antibodies bind both human and monkey LAG-3 but do not bind mouse LAG-3. The invention provides anti-LAG-3 antibodies that can inhibit the binding of LAG-3 to MHC Class II molecules and that can stimulate antigen-specific T cell responses. Nucleic acid molecules encoding the antibodies of the invention, expression vectors, host cells and methods for expressing the antibodies of the invention are also provided. Immunoconjugates, bispecific molecules and pharmaceutical compositions comprising the antibodies of the invention are also provided. This disclosure also provides methods for detecting LAG-3, as well as methods for treating stimulating immune responses using an anti-LAG-3 antibody of the invention.Type: ApplicationFiled: December 7, 2021Publication date: June 30, 2022Inventors: Kent B. THUDIUM, Mark J. SELBY, Kyra D. ZENS, Mark YAMANAKA, Alan J. KORMAN, Heidi N. LEBLANC
-
Publication number: 20220195040Abstract: The present disclosure provides isolated monoclonal antibodies that specifically bind to LAG-3 with high affinity, particularly human monoclonal antibodies. Preferably, the antibodies bind human LAG-3. In certain embodiments, the antibodies bind both human and monkey LAG-3 but do not bind mouse LAG-3. The invention provides anti-LAG-3 antibodies that can inhibit the binding of LAG-3 to WIC Class II molecules and that can stimulate antigen-specific T cell responses. Nucleic acid molecules encoding the antibodies of the invention, expression vectors, host cells and methods for expressing the antibodies of the invention are also provided. Immunoconjugates, bispecific molecules and pharmaceutical compositions comprising the antibodies of the invention are also provided. This disclosure also provides methods for detecting LAG-3, as well as methods for treating stimulating immune responses using an anti-LAG-3 antibody of the invention.Type: ApplicationFiled: December 7, 2021Publication date: June 23, 2022Inventors: Kent B. THUDIUM, Mark J. SELBY, Kyra D. ZENS, Mark YAMANAKA, Alan J. KORMAN, Heidi N. LEBLANC
-
Publication number: 20220195042Abstract: The present disclosure provides isolated monoclonal antibodies (e.g., humanized and human monoclonal antibodies), or antigen-binding fragments thereof, that specifically bind to human natural killer cell inhibitory receptor group 2A (NKG2A) protein with high affinity and exhibit therapeutically desirable functional properties, such as for the treatment of, for example, cancer. Immunoconjugates, bispecific molecules, and pharmaceutical compositions comprising the anti-NKG2A antibodies of the invention are also provided. Nucleic acid molecules encoding the antibodies, expression vectors, host cells, and methods of treatment of, for example, cancer using the antibodies are further provided. Combination therapy, in which an anti-NKG2A antibody in the present disclosure is co-administered with at least one additional agent such as another antibody (e.g., anti-PD-1, anti-PD-L1, and/or anti-CTLA-4 antibodies), is also provided.Type: ApplicationFiled: February 10, 2022Publication date: June 23, 2022Inventors: Natalie Bezman, Alan J. Korman, Shrikan Deshpande, Amy D. Jhatakia, Richard Y. Huang, Guodong Chen, Ginger G. Rakestraw, Karla Ann Henning, Vangipuram S. Rangan, Christine Bee, Xiang Shao