Patents by Inventor Alan J. Magnus

Alan J. Magnus has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150333028
    Abstract: Wafer level packages and methods for producing wafer level packages having non-wettable solder collars are provided. In one embodiment, the method includes forming solder mask openings in a solder mask layer exposing regions of a patterned metal level underlying the solder mask layer. Before or after forming solder mask openings in the solder mask layer, non-wettable solder collars are produced extending partially over the exposed regions of the patterned metal level. Solder balls are deposited onto the non-wettable solder collars and into the solder mask openings such that circumferential clearances are provided around base portions of the solder balls and sidewalls of the solder mask layer defining the solder mask openings.
    Type: Application
    Filed: May 14, 2014
    Publication date: November 19, 2015
    Inventors: WENG F. YAP, ALAN J. MAGNUS
  • Publication number: 20150270233
    Abstract: Wafer level packages and methods for producing wafer level packages having delamination-resistant redistribution layers are provided. In one embodiment, the method includes building inner redistribution layers over a semiconductor die. Inner redistribution layers include a body of dielectric material containing metal routing features. A routing-free dielectric block is formed in the body of dielectric material and is uninterrupted by the metal routing features. An outer redistribution layer is produced over the inner redistribution layers and contains a metal plane, which is patterned to include one or more outgassing openings overlying the routing-free dielectric block. The routing-free dielectric block has a minimum width, length, and depth each at least twice the thickness of the outer redistribution layer.
    Type: Application
    Filed: March 24, 2014
    Publication date: September 24, 2015
    Inventors: MICHAEL B. VINCENT, TRUNG Q. DUONG, ZHIWEI GONG, SCOTT M. HAYES, ALAN J. MAGNUS, DOUGLAS G. MITCHELL, EDUARD J. PABST, JASON R. WRIGHT, WENG F. YAP
  • Publication number: 20150232332
    Abstract: A method includes applying a compressive force against MEMS structures at a front side of a MEMS wafer using a protective material covering at least a portion of the front side of the MEMS wafer. The method further includes concurrently dicing through the protective material and the MEMS wafer from the front side to produce a plurality of MEMS dies, each of which includes at least one of the MEMS structures. The protective material is secured over the front side of the MEMS wafer to apply pressure to the protective material, and thereby impart the compressive force against the MEMS structures to largely limit movement of the MEMS structures during dicing. A tack-free surface of the protective material enables its removal following dicing.
    Type: Application
    Filed: February 18, 2014
    Publication date: August 20, 2015
    Inventors: Alan J. Magnus, Vijay Sarihan
  • Publication number: 20150228560
    Abstract: A structure to improve saw singulation quality and wettability of integrated circuit packages (140) is assembled with lead frames (112) having half-etched recesses (134) in leads. In one embodiment, the structure is a lead frame strip (110) having a plurality of lead frames. Each of the lead frames includes a depression (130) that is at least partially filled with a material (400) prior to singulating the lead frame strip. In another embodiment, the structure is a semiconductor device package (140) that includes a semiconductor device encapsulated in a package body (142) having a plurality of leads (120). Each lead has an exposed portion external to the package. There is recess (134) at a corner of each lead. Each recess has a generally concave configuration. Each recess is filled with a removable material (300).
    Type: Application
    Filed: April 27, 2015
    Publication date: August 13, 2015
    Inventors: Dwight L. DANIELS, Stephen R. HOOPER, Alan J. MAGNUS, Justin E. POARCH
  • Publication number: 20150217998
    Abstract: A MEMS wafer (46) includes a front side (52) having a plurality of MEMS structure sites (60) at which MEMS structures (50) are located. A method (40) for protecting the MEMS structures (50) includes applying (44) a non-active feature (66) on the front side of the MEMS wafer in a region that is devoid of the MEMS structures and mounting (76) the front side of the MEMS wafer in a dicing frame (86) such that a back side (74) of the MEMS wafer is exposed. The MEMS wafer is then diced (102) from the back side into a plurality of MEMS dies (48).
    Type: Application
    Filed: February 4, 2014
    Publication date: August 6, 2015
    Inventors: Alan J. Magnus, Chad S. Dawson, Stephen R. Hooper
  • Patent number: 9093436
    Abstract: A structure and method to improve saw singulation quality and wettability of integrated circuit packages (140) assembled with lead frames (112) having half-etched recesses (134) in leads. A method of manufacturing lead frames includes providing a lead frame strip (110) having a plurality of lead frames. Each of the lead frames includes a depression (130) that is at least partially filled with a material (400) prior to singulating the lead frame strip.
    Type: Grant
    Filed: August 7, 2014
    Date of Patent: July 28, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Dwight L. Daniels, Stephen R. Hooper, Alan J. Magnus, Justin E. Poarch
  • Patent number: 9070669
    Abstract: Methods of manufacturing a flat-pack no-lead microelectronic package (2100) coat exposed base metal at a cut end of a lead frame of the package with solder (1001). One method coats the exposed base metal with solder when the package is in a strip (200, 300). Another method coats the exposed base metal with solder after the package is singulated. As a result, all portions of leads of the package that may receive solder during mounting of the package to a printed circuit board are solder wettable. A solder wettable lead end (504) on the package facilitates formation of a solder fillet during mounting of the package.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: June 30, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Dwight L. Daniels, Alan J. Magnus, Pamela A. O'Brien
  • Publication number: 20150137381
    Abstract: Microelectronic packages and methods for fabricating microelectronic packages having optical mask layers are provided. In one embodiment, the method includes building redistribution layers over the frontside of a semiconductor die. The redistribution layers includes a body of dielectric material in which a plurality of interconnect lines are formed. An optical mask layer is formed over the frontside of the semiconductor die and at least a portion of the redistribution layers. The optical mask layer has an opacity greater than the opacity of the body of dielectric material and blocks or obscures visual observation of an interior portion of the microelectronic package through the redistribution layers.
    Type: Application
    Filed: November 21, 2013
    Publication date: May 21, 2015
    Inventors: WENG F. YAP, SCOTT M. HAYES, ALAN J. MAGNUS
  • Publication number: 20150115454
    Abstract: Microelectronic packages having layered interconnect structures are provided, as are methods for the fabrication thereof. In one embodiment, the method includes forming a first plurality of interconnect lines in ohmic contact with a first bond pad row provided on a semiconductor. A dielectric layer is deposited over the first plurality of interconnect lines, the first bond pad row, and a second bond pad row adjacent the first bond pad row. A trench via is then formed in the dielectric layer to expose at least the second bond pad row therethrough. A second plurality of interconnect lines is formed in ohmic contact with the second bond pad row within the trench via. The second plurality of interconnect lines extends over the first bond pad row and is electrically isolated therefrom by the dielectric layer to produce at least a portion of the layered interconnect structure.
    Type: Application
    Filed: October 30, 2013
    Publication date: April 30, 2015
    Inventors: Alan J. Magnus, Trung Q. Duong, Zhiwei Gong, Scott M. Hayes, Douglas G. Mitchell, Michael B. Vincent, Jason R. Wright, Weng F. Yap
  • Patent number: 8962389
    Abstract: Embodiments of microelectronic packages and methods for fabricating microelectronic packages are provided. In one embodiment, the fabrication method includes printing a patterned die attach material onto the backside of a wafer including an array of non-singulated microelectronic die each having an interior keep-out area, such as a central keep-out area. The die attach material, such as a B-stage epoxy, is printed onto the wafer in a predetermined pattern such that the die attach material does not encroaching into the interior keep-out areas. The wafer is singulated to produce singulated microelectronic die each including a layer of die attach material. The singulated microelectronic die are then placed onto leadframes or other package substrates with the die attach material contacting the package substrates. The layer of die attach material is then fully cured to adhere an outer peripheral portion of the singulated microelectronic die to its package substrate.
    Type: Grant
    Filed: May 30, 2013
    Date of Patent: February 24, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: William C. Stermer, Jr., Philip H. Bowles, Alan J. Magnus
  • Publication number: 20140353772
    Abstract: Embodiments of microelectronic packages and methods for fabricating microelectronic packages are provided. In one embodiment, the fabrication method includes printing a patterned die attach material onto the backside of a wafer including an array of non-singulated microelectronic die each having an interior keep-out area, such as a central keep-out area. The die attach material, such as a B-stage epoxy, is printed onto the wafer in a predetermined pattern such that the die attach material does not encroaching into the interior keep-out areas. The wafer is singulated to produce singulated microelectronic die each including a layer of die attach material. The singulated microelectronic die are then placed onto leadframes or other package substrates with the die attach material contacting the package substrates. The layer of die attach material is then fully cured to adhere an outer peripheral portion of the singulated microelectronic die to its package substrate.
    Type: Application
    Filed: May 30, 2013
    Publication date: December 4, 2014
    Inventors: William C. Stermer, JR., Philip H. Bowles, Alan J. Magnus
  • Publication number: 20140338956
    Abstract: A structure and method to improve saw singulation quality and wettability of integrated circuit packages (140) assembled with lead frames (112) having half-etched recesses (134) in leads. A method of manufacturing lead frames includes providing a lead frame strip (110) having a plurality of lead frames. Each of the lead frames includes a depression (130) that is at least partially filled with a material (400) prior to singulating the lead frame strip.
    Type: Application
    Filed: August 7, 2014
    Publication date: November 20, 2014
    Inventors: Dwight L. DANIELS, Stephen R. HOOPER, Alan J. MAGNUS, Justin E. POARCH
  • Patent number: 8841758
    Abstract: A structure and method to improve saw singulation quality and wettability of integrated circuit packages (140) assembled with lead frames (112) having half-etched recesses (134) in leads. A method of forming a semiconductor device package includes providing a lead frame strip (110) having a plurality of lead frames. Each of the lead frames includes a depression (130) that is at least partially filled with a material (400) prior to singulating the strip.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: September 23, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Dwight L. Daniels, Stephen R. Hooper, Alan J. Magnus, Justin E. Poarch
  • Patent number: 8822268
    Abstract: Embodiments of a method for fabricating Redistributed Chip Packages are provided, as are embodiments of Redistributed Chip Packages. In one embodiment, the method includes the steps/processes of embedding a first semiconductor die and a microelectronic component in a molded panel having a frontside, the first semiconductor die comprising a plurality of bond pads over which a plurality of raised contacts has been formed. The frontside of the molded panel is polished to impart the molded panel with a substantially planar surface through which the terminals of the microelectronic component and the plurality of raised contacts are exposed. Finally, at least one redistribution layer is build or produced over the substantially planar surface to electrically interconnect the first semiconductor die and the microelectronic component.
    Type: Grant
    Filed: July 17, 2013
    Date of Patent: September 2, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Alan J. Magnus
  • Publication number: 20140167247
    Abstract: A method and apparatus for forming a backside contact, electrical and/or thermal, for die encapsulated in a semiconductor device package are provided. Die of varying thicknesses can be accommodated within the semiconductor device package. Embodiments of the present invention provide a conductive pedestal coupled to a backside contact of a die, where the coupling is performed prior to encapsulating the die within the package. In addition, conductive pedestals coupled to varying die within a semiconductor device package are of such a thickness that each conductive pedestal can be exposed on the back side of the package without exposing or damaging the backside of any encapsulated die. Embodiments of the present invention provide for the conductive pedestals being made of electrically or thermally conductive material and coupled to the device die contact using an electrically and/or thermally conductive adhesive.
    Type: Application
    Filed: February 24, 2014
    Publication date: June 19, 2014
    Applicant: FREESCALE SEMICONDUCTOR IN.
    Inventors: ALAN J. MAGNUS, CARL E. D'ACOSTA, DOUGLAS G. MITCHELL, JUSTIN E. POARCH
  • Publication number: 20140145325
    Abstract: An embodiment of an electronic device includes an IC die with a top surface and a bond pad exposed at the top surface. A stud bump (or stack of stud bumps) is connected to the bond pad, and the stud bump and die are encapsulated with encapsulant. A trench is formed from a top surface of the encapsulant to the stud bump, resulting in the formation of a trench-oriented surface of the stud bump, which is exposed at the bottom of the trench. An end of an interconnect is connected to the trench-oriented surface of the stud bump. The interconnect extends above the encapsulant top surface, and may be coupled to another IC die of the same electronic device, another IC die that is distinct from the device, or another conductive feature of the device or a larger electronic system in which the device is incorporated.
    Type: Application
    Filed: November 29, 2012
    Publication date: May 29, 2014
    Inventors: ALAN J. MAGNUS, FRANCISCO CHAIDEZ
  • Publication number: 20140134799
    Abstract: Methods of manufacturing a flat-pack no-lead microelectronic package (2100) coat exposed base metal at a cut end of a lead frame of the package with solder (1001). One method coats the exposed base metal with solder when the package is in a strip (200, 300). Another method coats the exposed base metal with solder after the package is singulated. As a result, all portions of leads of the package that may receive solder during mounting of the package to a printed circuit board are solder wettable. A solder wettable lead end (504) on the package facilitates formation of a solder fillet during mounting of the package.
    Type: Application
    Filed: November 9, 2012
    Publication date: May 15, 2014
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Dwight L. DANIELS, Alan J. MAGNUS, Pamela A. O'BRIEN
  • Patent number: 8685790
    Abstract: A method and apparatus for forming a backside contact, electrical and/or thermal, for die encapsulated in a semiconductor device package are provided. Die of varying thicknesses can be accommodated within the semiconductor device package. Embodiments of the present invention provide a conductive pedestal coupled to a backside contact of a die, where the coupling is performed prior to encapsulating the die within the package. In addition, conductive pedestals coupled to varying die within a semiconductor device package are of such a thickness that each conductive pedestal can be exposed on the back side of the package without exposing or damaging the backside of any encapsulated die. Embodiments of the present invention provide for the conductive pedestals being made of electrically or thermally conductive material and coupled to the device die contact using an electrically and/or thermally conductive adhesive.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: April 1, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Alan J. Magnus, Carl E. D. Acosta, Douglas G. Mitchell, Justin E. Poarch
  • Publication number: 20140001616
    Abstract: A structure and method to improve saw singulation quality and wettability of integrated circuit packages (140) assembled with lead frames (112) having half-etched recesses (134) in leads. A method of forming a semiconductor device package includes providing a lead frame strip (110) having a plurality of lead frames. Each of the lead frames includes a depression (130) that is at least partially filled with a material (400) prior to singulating the strip.
    Type: Application
    Filed: June 29, 2012
    Publication date: January 2, 2014
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Dwight L. DANIELS, Stephen R. HOOPER, Alan J. MAGNUS, Justin E. POARCH
  • Publication number: 20130207255
    Abstract: A method and apparatus for forming a backside contact, electrical and/or thermal, for die encapsulated in a semiconductor device package are provided. Die of varying thicknesses can be accommodated within the semiconductor device package. Embodiments of the present invention provide a conductive pedestal coupled to a backside contact of a die, where the coupling is performed prior to encapsulating the die within the package. In addition, conductive pedestals coupled to varying die within a semiconductor device package are of such a thickness that each conductive pedestal can be exposed on the back side of the package without exposing or damaging the backside of any encapsulated die. Embodiments of the present invention provide for the conductive pedestals being made of electrically or thermally conductive material and coupled to the device die contact using an electrically and/or thermally conductive adhesive.
    Type: Application
    Filed: February 15, 2012
    Publication date: August 15, 2013
    Inventors: Alan J. Magnus, Carl E.D. Acosta, Douglas G. Mitchell, Justin E. Poarch