Patents by Inventor Albert Liao

Albert Liao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11888019
    Abstract: Some embodiments include a ferroelectric device having a ferroelectric insulative material which includes zinc. Some embodiments include a capacitor having a ferroelectric insulative material between a first electrode and a second electrode. The ferroelectric insulative material includes one or more metal-oxide-containing layers and one or more zinc-containing layers. Some embodiments include a memory array having a first set of first conductive structures and a second set of second conductive structures. The first conductive structures are coupled with driver circuitry, and the second conductive structures are coupled with sensing circuitry. The memory array includes an array of access devices. Each of the access devices is uniquely addressed by one of the first conductive structures in combination with one of the second conductive structures. Ferroelectric capacitors are coupled with the access devices. Each of the ferroelectric capacitors includes ferroelectric insulative material having zinc.
    Type: Grant
    Filed: December 17, 2020
    Date of Patent: January 30, 2024
    Assignee: Micron Technology, Inc.
    Inventors: Mikhail A. Treger, Albert Liao
  • Patent number: 11871582
    Abstract: A method of forming a vertical transistor comprising a top source/drain region, a bottom source/drain region, a channel region vertically between the top and bottom source/drain regions, and a gate operatively laterally-adjacent the channel region comprises, in multiple time-spaced microwave annealing steps, microwave annealing at least the channel region. The multiple time-spaced microwave annealing steps reduce average concentration of elemental-form H in the channel region from what it was before start of the multiple time-spaced microwave annealing steps. The reduced average concentration of elemental-form H is 0.005 to less than 1 atomic percent. Structure embodiments are disclosed.
    Type: Grant
    Filed: January 31, 2022
    Date of Patent: January 9, 2024
    Assignee: Micron Technology, Inc.
    Inventors: Hung-Wei Liu, Vassil N. Antonov, Ashonita A. Chavan, Darwin Franseda Fan, Jeffery B. Hull, Anish A. Khandekar, Masihhur R. Laskar, Albert Liao, Xue-Feng Lin, Manuj Nahar, Irina V. Vasilyeva
  • Publication number: 20230395690
    Abstract: Some embodiments include ferroelectric assemblies. Some embodiments include a capacitor which has ferroelectric insulative material between a first electrode and a second electrode. The capacitor also has a metal oxide between the second electrode and the ferroelectric insulative material. The metal oxide has a thickness of less than or equal to about 30 ?. Some embodiments include a method of forming an assembly. A first capacitor electrode is formed over a semiconductor-containing base. Ferroelectric insulative material is formed over the first electrode. A metal-containing material is formed over the ferroelectric insulative material. The metal-containing material is oxidized to form a metal oxide from the metal-containing material. A second electrode is formed over the metal oxide.
    Type: Application
    Filed: August 18, 2023
    Publication date: December 7, 2023
    Applicant: Micron Technology, Inc.
    Inventors: Albert Liao, Manzar Siddik
  • Patent number: 11825662
    Abstract: A ferroelectric capacitor comprises two conductive capacitor electrodes having ferroelectric material there-between. At least one of the capacitor electrodes comprise MxSiOy, where “M” is at least one of Ru, Ti, Ta, Co, Pt, Ir, Os, Mo, V, W, Sr, Re, Rh, Pd, La, Zn, In, Sig, and Nb, Other aspects, including method, are disclosed.
    Type: Grant
    Filed: July 16, 2021
    Date of Patent: November 21, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Clement Jacob, Vassil N. Antonov, Jaydeb Goswami, Albert Liao, Christopher W. Petz, Durai Vishak Nirmal Ramaswamy
  • Patent number: 11769816
    Abstract: Some embodiments include ferroelectric assemblies. Some embodiments include a capacitor which has ferroelectric insulative material between a first electrode and a second electrode. The capacitor also has a metal oxide between the second electrode and the ferroelectric insulative material. The metal oxide has a thickness of less than or equal to about 30 ?. Some embodiments include a method of forming an assembly. A first capacitor electrode is formed over a semiconductor-containing base. Ferroelectric insulative material is formed over the first electrode. A metal-containing material is formed over the ferroelectric insulative material. The metal-containing material is oxidized to form a metal oxide from the metal-containing material. A second electrode is formed over the metal oxide.
    Type: Grant
    Filed: October 25, 2022
    Date of Patent: September 26, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Albert Liao, Manzar Siddik
  • Patent number: 11753645
    Abstract: The present disclosure relates to aptamers, polynucleotides, and nuclei acid molecules, which include a polynucleotide sequence capable of specifically binding polypeptides participating in M. hyopneumoniae infection. Also provided are methods of using nucleic acid molecules, polynucleotides and synthetic antibodies directed there against for detection, treating and neutralization of M. hyopneumoniae infection.
    Type: Grant
    Filed: March 3, 2022
    Date of Patent: September 12, 2023
    Assignee: AEROVIRUS TECHNOLOGIES INC.
    Inventors: Norman J Marchand, Thomas G Caltagirone, Albert Liao
  • Publication number: 20230045210
    Abstract: Some embodiments include ferroelectric assemblies. Some embodiments include a capacitor which has ferroelectric insulative material between a first electrode and a second electrode. The capacitor also has a metal oxide between the second electrode and the ferroelectric insulative material. The metal oxide has a thickness of less than or equal to about 30 ?. Some embodiments include a method of forming an assembly. A first capacitor electrode is formed over a semiconductor-containing base. Ferroelectric insulative material is formed over the first electrode. A metal-containing material is formed over the ferroelectric insulative material. The metal-containing material is oxidized to form a metal oxide from the metal-containing material. A second electrode is formed over the metal oxide.
    Type: Application
    Filed: October 25, 2022
    Publication date: February 9, 2023
    Applicant: Micron Technology, Inc.
    Inventors: Albert Liao, Manzar Siddik
  • Patent number: 11515396
    Abstract: Some embodiments include ferroelectric assemblies. Some embodiments include a capacitor which has ferroelectric insulative material between a first electrode and a second electrode. The capacitor also has a metal oxide between the second electrode and the ferroelectric insulative material. The metal oxide has a thickness of less than or equal to about 30 ?. Some embodiments include a method of forming an assembly. A first capacitor electrode is formed over a semiconductor-containing base. Ferroelectric insulative material is formed over the first electrode. A metal-containing material is formed over the ferroelectric insulative material. The metal-containing material is oxidized to form a metal oxide from the metal-containing material. A second electrode is formed over the metal oxide.
    Type: Grant
    Filed: February 5, 2021
    Date of Patent: November 29, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Albert Liao, Manzar Siddik
  • Publication number: 20220351768
    Abstract: A semiconductor structure includes an electrode, a ferroelectric material adjacent the electrode, the ferroelectric material comprising an oxide of at least one of hafnium and zirconium, the ferroelectric material doped with bismuth, and another electrode adjacent the ferroelectric material on an opposite side thereof from the first electrode. Related semiconductor structures, memory cells, semiconductor devices, electronic systems, and related methods are disclosed.
    Type: Application
    Filed: July 12, 2022
    Publication date: November 3, 2022
    Inventors: Albert Liao, Wayne I. Kinney, Yi Fang Lee, Manzar Siddik
  • Patent number: 11396655
    Abstract: The present invention relates to aptamers, polynucleotides, and nucleic acid molecules, which include a polynucleotide sequence capable of specifically binding polypeptides participating in M. hyopneumoniae infection. Also provided are methods of using nucleic acid molecules, polynucleotides and synthetic antibodies directed there against for detection, treating and neutralization of M. hyopneumoniae infection.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: July 26, 2022
    Inventors: Norman J Marchand, Thomas G Caltagirone, Albert Liao
  • Patent number: 11398263
    Abstract: A semiconductor structure includes an electrode, a ferroelectric material adjacent the electrode, the ferroelectric material comprising an oxide of at least one of hafnium and zirconium, the ferroelectric material doped with bismuth, and another electrode adjacent the ferroelectric material on an opposite side thereof from the first electrode. Related semiconductor structures, memory cells, semiconductor devices, electronic systems, and related methods are disclosed.
    Type: Grant
    Filed: July 15, 2020
    Date of Patent: July 26, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Albert Liao, Wayne I. Kinney, Yi Fang Lee, Manzar Siddik
  • Publication number: 20220199757
    Abstract: Some embodiments include a ferroelectric device having a ferroelectric insulative material which includes zinc. Some embodiments include a capacitor having a ferroelectric insulative material between a first electrode and a second electrode. The ferroelectric insulative material includes one or more metal-oxide-containing layers and one or more zinc-containing layers. Some embodiments include a memory array having a first set of first conductive structures and a second set of second conductive structures. The first conductive structures are coupled with driver circuitry, and the second conductive structures are coupled with sensing circuitry. The memory array includes an array of access devices. Each of the access devices is uniquely addressed by one of the first conductive structures in combination with one of the second conductive structures. Ferroelectric capacitors are coupled with the access devices. Each of the ferroelectric capacitors includes ferroelectric insulative material having zinc.
    Type: Application
    Filed: December 17, 2020
    Publication date: June 23, 2022
    Applicant: Micron Technology, Inc.
    Inventors: Mikhail A. Treger, Albert Liao
  • Publication number: 20220186225
    Abstract: The present disclosure relates to aptamers, polynucleotides, and nuclei acid molecules, which include a polynucleotide sequence capable of specifically binding polypeptides participating in M. Hyopneumoniae infection. Also provided are methods of using nucleic acid molecules, polynucleotides and synthetic antibodies directed there against for detection, treating and neutralization of M. Hyopneumoniae infection.
    Type: Application
    Filed: March 3, 2022
    Publication date: June 16, 2022
    Inventors: Norman J MARCHAND, Thomas G CALTAGIRONE, Albert Liao
  • Publication number: 20220157837
    Abstract: A method of forming a vertical transistor comprising a top source/drain region, a bottom source/drain region, a channel region vertically between the top and bottom source/drain regions, and a gate operatively laterally-adjacent the channel region comprises, in multiple time-spaced microwave annealing steps, microwave annealing at least the channel region. The multiple time-spaced microwave annealing steps reduce average concentration of elemental-form H in the channel region from what it was before start of the multiple time-spaced microwave annealing steps. The reduced average concentration of elemental-form H is 0.005 to less than 1 atomic percent. Structure embodiments are disclosed.
    Type: Application
    Filed: January 31, 2022
    Publication date: May 19, 2022
    Applicant: Micron Technology, Inc.
    Inventors: Hung-Wei Liu, Vassil N, Antonov, Ashonita A. Chavan, Darwin Franseda Fan, Jeffrey B. Hull, Anish A. Khandekar, Masihhur R. Laskar, Albert Liao, Xue-Feng Lin, Manuj Nahar, Irina V. Vasilyeva
  • Publication number: 20220093617
    Abstract: A method of forming a vertical transistor comprising a top source/drain region, a bottom source/drain region, a channel region vertically between the top and bottom source/drain regions, and a gate operatively laterally-adjacent the channel region comprises, in multiple time-spaced microwave annealing steps, microwave annealing at least the channel region. The multiple time-spaced microwave annealing steps reduce average concentration of elemental-form H in the channel region from what it was before start of the multiple time-spaced microwave annealing steps. The reduced average concentration of elemental-form H is 0.005 to less than 1 atomic percent. Structure embodiments are disclosed.
    Type: Application
    Filed: September 21, 2020
    Publication date: March 24, 2022
    Applicant: Micron Technology, Inc.
    Inventors: Hung-Wei Liu, Vassil N. Antonov, Ashonita A. Chavan, Darwin Franseda Fan, Jeffery B. Hull, Anish A. Khandekar, Masihhur R. Laskar, Albert Liao, Xue-Feng Lin, Manuj Nahar, Irina V. Vasilyeva
  • Patent number: 11264395
    Abstract: A method of forming a vertical transistor comprising a top source/drain region, a bottom source/drain region, a channel region vertically between the top and bottom source/drain regions, and a gate operatively laterally-adjacent the channel region comprises, in multiple time-spaced microwave annealing steps, microwave annealing at least the channel region. The multiple time-spaced microwave annealing steps reduce average concentration of elemental-form H in the channel region from what it was before start of the multiple time-spaced microwave annealing steps. The reduced average concentration of elemental-form H is 0.005 to less than 1 atomic percent. Structure embodiments are disclosed.
    Type: Grant
    Filed: September 21, 2020
    Date of Patent: March 1, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Hung-Wei Liu, Vassil N. Antonov, Ashonita A. Chavan, Darwin Franseda Fan, Jeffery B. Hull, Anish A. Khandekar, Masihhur R. Laskar, Albert Liao, Xue-Feng Lin, Manuj Nahar, Irina V. Vasilyeva
  • Publication number: 20210343732
    Abstract: A ferroelectric capacitor comprises two conductive capacitor electrodes having ferroelectric material there-between. At least one of the capacitor electrodes comprise MxSiOy, where “M” is at least one of Ru, Ti, Ta, Co, Pt, Ir, Os, Mo, V, W, Sr, Re, Rh, Pd, La, Zn, In, Sig, and Nb, Other aspects, including method, are disclosed.
    Type: Application
    Filed: July 16, 2021
    Publication date: November 4, 2021
    Applicant: Micron Technology, Inc.
    Inventors: Clement Jacob, Vassil N. Antonov, Jaydeb Goswami, Albert Liao, Christopher W. Petz, Durai Vishak Nirmal Ramaswamy
  • Patent number: 11101274
    Abstract: A ferroelectric capacitor comprises two conductive capacitor electrodes having ferroelectric material there-between. At least one of the capacitor electrodes comprise MxSiOy, where “M” is at least one of Ru, Ti, Ta, Co, Pt, Ir. Os, Mo, V, W, Sr, Re, Rh, Pd, La, Zn, In, Sn, and Nb. Other aspects, including method, are disclosed.
    Type: Grant
    Filed: December 5, 2019
    Date of Patent: August 24, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Clement Jacob, Vassil N. Antonov, Jaydeb Goswami, Albert Liao, Christopher W. Petz, Durai Vishak Nirmal Ramaswamy
  • Publication number: 20210175239
    Abstract: A ferroelectric capacitor comprises two conductive capacitor electrodes having ferroelectric material there-between. At least one of the capacitor electrodes comprise MxSiOy, where “M” is at least one of Ru, Ti, Ta, Co, Pt, Ir, Os, Mo, V, W, Sr, Re, Rh, Pd, La, Zn, In, Sn, and Nb. Other aspects, including method, are disclosed.
    Type: Application
    Filed: December 5, 2019
    Publication date: June 10, 2021
    Applicant: Micron Technology, Inc.
    Inventors: Clement Jacob, Vassil N. Antonov, Jaydeb Goswami, Albert Liao, Christopher W. Petz, Durai Vishak Nirmal Ramaswamy
  • Publication number: 20210159320
    Abstract: Some embodiments include ferroelectric assemblies. Some embodiments include a capacitor which has ferroelectric insulative material between a first electrode and a second electrode. The capacitor also has a metal oxide between the second electrode and the ferroelectric insulative material. The metal oxide has a thickness of less than or equal to about 30 ?. Some embodiments include a method of forming an assembly. A first capacitor electrode is formed over a semiconductor-containing base. Ferroelectric insulative material is formed over the first electrode. A metal-containing material is formed over the ferroelectric insulative material. The metal-containing material is oxidized to form a metal oxide from the metal-containing material. A second electrode is formed over the metal oxide.
    Type: Application
    Filed: February 5, 2021
    Publication date: May 27, 2021
    Applicant: Micron Technology, Inc.
    Inventors: Albert Liao, Manzar Siddik