Patents by Inventor Albert Molina

Albert Molina has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11962320
    Abstract: A semiconductor chip providing on-chip self-testing of an Analog-to-Digital Converter, ADC, implemented in the semiconductor chip is provided. The semiconductor chip comprises the ADC and a Digital-to-Analog Converter, DAC, configured to generate and supply a radio frequency test signal to the ADC via a supply path. The ADC is configured to generate digital output data based on the radio frequency test signal. The semiconductor chip further comprises a reference data generation circuit configured to generate digital reference data. Additionally, the semiconductor chip comprises a comparator circuit configured to compare the digital output data to the digital reference in order to determine error data.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: April 16, 2024
    Assignee: Intel Corporation
    Inventors: Kameran Azadet, Martin Clara, Daniel Gruber, Albert Molina, Hundo Shin
  • Patent number: 11955732
    Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
    Type: Grant
    Filed: December 27, 2022
    Date of Patent: April 9, 2024
    Assignee: Intel Corporation
    Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asl, Kaushik Dasgupta, Kunal Datta, Brandon Davis, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Yossi Tsfati, Marian Verhelst, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
  • Publication number: 20240007337
    Abstract: Techniques are disclosed for the use of Crest Factor Reduction (CFR) technique that utilizes a cancellation pulse signal having a reduced length. The CFR technique may be applied to a signal to be transmitted, which may comprise a composite signal having one or more carrier signals. Each carrier signal of the composite signal may be filtered via a respective channel filter and then recombined to form the signal to be transmitted, on which the CFR operations are then applied. The length of the cancellation pulse signal is less than the number of taps of the channel filter with the largest number of taps. This reduction in cancellation pulse signal length significantly reduces the processing power required to perform the CFR operations while maintaining regulatory emissions compliance.
    Type: Application
    Filed: June 30, 2022
    Publication date: January 4, 2024
    Inventors: Sunitha Motipalli, Kameran Azadet, Albert Molina, Joseph Othmer, Kannan Rajamani
  • Publication number: 20240004957
    Abstract: Techniques are disclosed for the use of Crest Factor Reduction (CFR) algorithm that performs oversampling of an input signal and a cancellation pulse, and detects a set of peak samples in the upsampled input signal that exceed a predetermined threshold value. The peak samples are clustered such that a subset of the oversampled signal peaks are used to compute gain factors for the generation of a scaled truncated upsampled cancellation pulse. Several scaled truncated upsampled cancellation pulses are applied in parallel to perform peak cancellation of the highest peak in each cluster as part of an initial peak cancellation process. Any remaining peaks are canceled by iterative gain factors computation process. A final cancellation pulse is then generated by multiplying a cancellation pulse by the computed gain factors.
    Type: Application
    Filed: June 30, 2022
    Publication date: January 4, 2024
    Inventors: Sunitha Motipalli, Kameran Azadet, Albert Molina, Joseph Othmer, Kannan Rajamani
  • Publication number: 20230208429
    Abstract: A system and method for calibrating a time-interleaved digital-to-analog converter (DAC). A calibration signal generator generates calibration data, and a time-interleaved DAC converts the calibration data to an analog calibration signal. An observation analog-to-digital converter (ADC) samples, and quantizes, the analog calibration signal filtered by an anti-alias filter. A mismatch estimation block estimates a frequency response mismatch between the sub-DACs and generates a sub-DAC mismatch correction factor based on an output of the observation ADC. The calibration signal generator applies the sub-DAC mismatch correction factor to the calibration data. The mismatch estimation block may estimate a DC offset mismatch between the sub-DACs based on the output of the observation ADC and generates a DC offset correction factor, and the calibration signal generator applies the DC offset correction factor to the calibration data.
    Type: Application
    Filed: December 23, 2021
    Publication date: June 29, 2023
    Inventors: Albert MOLINA, Kameran AZADET, Martin CLARA, Daniel GRUBER
  • Publication number: 20230198536
    Abstract: An analog-to-digital conversion system. A clock generator generates a first clock signal at a first frequency. An analog-to-digital converter (ADC) converts an input analog signal to a digital signal. The ADC operates based on the first clock signal at the first frequency. A calibration digital-to-analog converter (DAC) generates an analog reference signal from digital reference data. A fractional rate clock generator generates a second clock signal from the first clock signal. The second clock signal is at a second frequency that is a fractional rate of the first frequency, and the calibration DAC operates at the second frequency. An equalizer processes an output of the ADC to remove a distortion incurred by the ADC and a calibration circuitry generates coefficients for the equalizer based on the digital reference data and the output of the ADC to the analog reference signal.
    Type: Application
    Filed: December 22, 2021
    Publication date: June 22, 2023
    Inventors: Albert MOLINA, Kameran AZADET, Martin CLARA
  • Publication number: 20230145401
    Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
    Type: Application
    Filed: December 27, 2022
    Publication date: May 11, 2023
    Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asl, Kaushik Dasgupta, Kunal Datta, Brandon Davis, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Yossi Tsfati, Marian Verhelst, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
  • Publication number: 20230015514
    Abstract: A system and method for equalization of a linear or non-linear system. The system includes an adder configured to add an analog reference signal and an input signal, a processing system configured to process a sum of the analog reference signal and the input signal, a non-linear equalizer (NLEQ) configured to process an output of the processing system to remove a distortion incurred by the processing system, a calibration circuitry configured to generate a reconstructed reference signal in digital domain based on measurement of the analog reference signal, and generate coefficients for the NLEQ based on the reconstructed reference signal and the output of the processing system, and a subtractor configured to subtract the reconstructed reference signal from an output of the NLEQ. The analog reference signal may be a sinusoid including single or multiple tones of sinusoids. The non-linear system may be an analog-to-digital converter (ADC).
    Type: Application
    Filed: June 25, 2021
    Publication date: January 19, 2023
    Inventors: Albert MOLINA, Martin CLARA, Kameran AZADET
  • Publication number: 20220384956
    Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
    Type: Application
    Filed: May 2, 2022
    Publication date: December 1, 2022
    Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asi, Kaushik Dasgupta, Kunal Datta, Brandon Davis, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Yossi Tsfati, Marian Verhelst, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
  • Patent number: 11489536
    Abstract: Input circuitry for an analog-to-digital converter (ADC) is provided. The input circuitry includes a calibration signal source configured to output a calibration signal for the ADC and an analog circuitry configured to receive and process an analog input signal for the ADC. The analog circuitry is further configured to generate a combined signal by combining the analog input signal and the calibration signal. The input circuitry further includes a buffer amplifier coupled to the analog circuitry and configured to supply a buffered signal to the ADC based on the combined signal. Further, the input circuitry includes neutralization circuitry configured to generate, based on the calibration signal, a neutralization signal for mitigating an unwanted signal component related to a limited reverse isolation of the analog circuitry. The neutralization circuitry is further configured to supply the neutralization signal to at least one of an input node and an intermediate node of the analog circuitry.
    Type: Grant
    Filed: June 25, 2021
    Date of Patent: November 1, 2022
    Assignee: INTEL CORPORATION
    Inventors: Martin Clara, Daniel Gruber, Giacomo Cascio, Albert Molina
  • Publication number: 20220345148
    Abstract: A digital-to-analog converter is provided. The digital-to-analog converter comprises a delay circuit configured to iteratively delay a digital input signal based on a clock signal for generating a plurality of delayed digital input signals. Further, the digital-to-analog converter comprises a plurality of groups of inverter cells. Each group of inverter cells is configured to generate a respective analog signal based on one of the plurality of delayed digital input signals. The inverter cells comprise a respective inverter circuit configured to invert the respective delayed digital input signal. The plurality of groups of inverter cells comprise different numbers of inverter cells. The digital-to-analog converter additionally comprises an output configured to output an analog output signal based on the analog signals of the plurality of groups of inverter cells.
    Type: Application
    Filed: December 23, 2019
    Publication date: October 27, 2022
    Inventors: Albert MOLINA, Kameran AZADET, Martin CLARA, Hundo SHIN
  • Publication number: 20220345144
    Abstract: A semiconductor chip providing on-chip self-testing of an Analog-to-Digital Converter, ADC, implemented in the semiconductor chip is provided. The semiconductor chip comprises the ADC and a Digital-to-Analog Converter, DAC, configured to generate and supply a radio frequency test signal to the ADC via a supply path. The ADC is configured to generate digital output data based on the radio frequency test signal. The semiconductor chip further comprises a reference data generation circuit configured to generate digital reference data. Additionally, the semiconductor chip comprises a comparator circuit configured to compare the digital output data to the digital reference in order to determine error data.
    Type: Application
    Filed: December 23, 2019
    Publication date: October 27, 2022
    Inventors: Kameran AZADET, Martin CLARA, Daniel GRUBER, Albert MOLINA, Hundo SHIN
  • Publication number: 20220345146
    Abstract: An analog-to-digital converter comprising a plurality of sampling cells. At least one of the plurality of sampling cells comprises a capacitive element coupled to a cell output of the at least one of the plurality of sampling cells, wherein a cell output signal is provided at the cell output. The at least one of the plurality of sampling cells further comprises a first cell input for receiving an input signal to be digitized, and a second cell input for receiving a calibration signal. Additionally, the at least one of the plurality of sampling cells comprises a first switch circuit capable of selectively coupling the first cell input to the capacitive element based on a clock signal, and a second switch circuit capable of selectively coupling the second cell input to the capacitive element, wherein a size of the second switch circuit is smaller than a size of the first switch circuit.
    Type: Application
    Filed: December 27, 2019
    Publication date: October 27, 2022
    Inventors: Albert MOLINA, Kameran AZADET, Martin CLARA, Matteo CAMPONESCHI, Christian LINDHOLM
  • Patent number: 11424539
    Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: August 23, 2022
    Assignee: Intel Corporation
    Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asl, Kaushik Dasgupta, Kunal Datta, Brandon Davis, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Yossi Tsfati, Marian Verhelst, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
  • Publication number: 20220200616
    Abstract: A method and system for controlling an analog-to-digital converter (ADC) in an observation path in a transceiver. The transceiver includes a transmit path, a receive path, and an observation path. The observation path includes an analog buffer and an observation ADC. A controller generates a control signal to control sampling events at the observation ADC to activate the observation ADC at combined uniform and non-uniform sampling instants. The controller may also generate a second control signal indicating whether digital data obtained by the observation ADC is valid or not. The digital data generated by the observation ADC at non-uniform sampling instants is indicated as invalid and digital data generated by the observation ADC at uniform sampling instants is indicated as valid. The digital data indicated as invalid may be discarded and the digital data indicated as valid is used for calibration of the transmit path or the receive path.
    Type: Application
    Filed: December 23, 2020
    Publication date: June 23, 2022
    Inventors: Matteo CAMPONESCHI, Albert MOLINA, Kannan RAJAMANI, Giacomo CASCIO, Christian LINDHOLM
  • Patent number: 11271578
    Abstract: A time-interleaved Analog-to-Digital Converter, ADC, system is provided. The time-inter-leaved ADC system includes time-interleaved first and second ADC circuits and a switching circuit. The switching circuit is configured to selectively supply an analog input signal for digitization to at least one of the first ADC circuit, the second ADC circuit or ground, and to selectively supply an analog calibration signal to at least one of the first ADC circuit, the second ADC circuit or ground. Further, the time-interleaved ADC system includes an output circuit configured to selectively generate, based on least one of a first digital signal output by the first ADC circuit and a second digital signal output by the second ADC circuit, a digital output signal.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: March 8, 2022
    Assignee: Intel Corporation
    Inventors: Albert Molina, Kameran Azadet, Matteo Camponeschi, Jose Luis Ceballos, Christian Lindholm
  • Publication number: 20210367607
    Abstract: A time-interleaved Analog-to-Digital Converter, ADC, system is provided. The time-inter- leaved ADC system includes time-interleaved first and second ADC circuits and a switching circuit. The switching circuit is configured to selectively supply an analog input signal for digitization to at least one of the first ADC circuit, the second ADC circuit or ground, and to selectively supply an analog calibration signal to at least one of the first ADC circuit, the second ADC circuit or ground. Further, the time-interleaved ADC system includes an output circuit configured to selectively generate, based on least one of a first digital signal output by the first ADC circuit and a second digital signal output by the second ADC circuit, a digital output signal.
    Type: Application
    Filed: March 29, 2019
    Publication date: November 25, 2021
    Inventors: Albert MOLINA, Kameran AZADET, Matteo CAMPONESCHI, Jose Luis CEBALLOS, Christian LINDHOLM
  • Patent number: 11177820
    Abstract: A n-bit Successive Approximation Register Analog-to-Digital Converter, SAR ADC, is provided. The SAR ADC comprises a respective plurality of sampling cells for each bit of the n-bit of the SAR ADC. Each sampling cell comprises a capacitive element coupled to a cell output of the sampling cell in order to provide a cell output signal. Further, each sampling cell comprises a first cell input for receiving a first signal, and a first switch circuit capable of selectively coupling the first cell input to the capacitive element. Each cell additionally comprises a second cell input for receiving a second signal, and a third cell input for receiving a third signal. The third signal exhibits opposite polarity compared to the second signal. Each sampling cell comprises a second switch circuit capable of selectively coupling one of the second cell input and the third cell input to the capacitive element. The SAR ADC further comprises at least one comparator circuit coupled to the sampling cells.
    Type: Grant
    Filed: July 20, 2020
    Date of Patent: November 16, 2021
    Assignee: Intel Corporation
    Inventors: Albert Molina, Martin Clara, Matteo Camponeschi, Christian Lindholm, Kameran Azadet
  • Patent number: 11082054
    Abstract: The present disclosure relates to a time-interleaved ADC circuit. The time-interleaved ADC circuit comprises an input for an analog input signal, a first ADC bank comprising a first plurality of parallel time-multiplexed ADCs, wherein the first plurality of parallel time-multiplexed ADCs is configured to subsequently generate a first plurality of samples of the analog input signal during a first time interval, a first buffer amplifier coupled between the input and the first ADC bank. The time-interleaved ADC circuit further comprises a second ADC bank comprising a second plurality of parallel time-multiplexed ADCs, wherein the second plurality of parallel time-multiplexed ADCs is configured to subsequently generate a second plurality of samples of the analog input signal during a second time interval, wherein the first and the second time intervals are subsequent time intervals, a second buffer amplifier coupled between the input and the second ADC bank.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: August 3, 2021
    Assignee: Intel Corporation
    Inventors: Giacomo Cascio, Christian Lindholm, Albert Molina, Martin Clara
  • Publication number: 20210203338
    Abstract: A n-bit Successive Approximation Register Analog-to-Digital Converter, SAR ADC, is provided. The SAR ADC comprises a respective plurality of sampling cells for each bit of the n-bit of the SAR ADC. Each sampling cell comprises a capacitive element coupled to a cell output of the sampling cell in order to provide a cell output signal. Further, each sampling cell comprises a first cell input for receiving a first signal, and a first switch circuit capable of selectively coupling the first cell input to the capacitive element. Each cell additionally comprises a second cell input for receiving a second signal, and a third cell input for receiving a third signal. The third signal exhibits opposite polarity compared to the second signal. Each sampling cell comprises a second switch circuit capable of selectively coupling one of the second cell input and the third cell input to the capacitive element. The SAR ADC further comprises at least one comparator circuit coupled to the sampling cells.
    Type: Application
    Filed: July 20, 2020
    Publication date: July 1, 2021
    Inventors: Albert MOLINA, Martin CLARA, Matteo CAMPONESCHI, Christian LINDHOLM, Kameran AZADET