Patents by Inventor Aleksander Labuda

Aleksander Labuda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150020245
    Abstract: Energy dissipation measurements in Frequency Modulation-Atomic Force Microscopy (FM-AFM) should provide additional information for dynamic force measurements as well as energy dissipation maps for robust material properties imaging as they should not be dependent directly upon the cantilever surface interaction regime. However, unexplained variabilities in experimental data have prevented progress in utilizing such energy dissipation studies. The inventors have demonstrated that the frequency response of the piezoacoustic cantilever excitation system, traditionally assumed flat, can actually lead to surprisingly large apparent damping by the coupling of the frequency shift to the drive-amplitude signal. Accordingly, means for correcting this source of apparent damping are presented allowing dissipation measurements to be reliably obtained and quantitatively compared to theoretical models.
    Type: Application
    Filed: March 13, 2013
    Publication date: January 15, 2015
    Inventors: Aleksander Labuda, Peter Grutter, Yoichi Miyahara, William Paul, Antoine Roy-Gobeil
  • Publication number: 20140317790
    Abstract: This invention relates to an optical light beam positioning system that enables the combination of two or more light beams of different wavelengths to be focused onto a probe or sample of a scientific instrument, such as an atomic force microscope, for a number of specific uses typical to AFMs, like measuring the deflection or oscillation of the probe and illuminating an object for optical imaging, and less traditional ones like photothermal excitation of the probe, photothermal activated changes in the sample, photothermal cleaning of the probe and photochemical, photovoltaic, photothermal and other light beam induced changes in the sample. The focused light beams may be independently positioned relative to each other.
    Type: Application
    Filed: March 12, 2014
    Publication date: October 23, 2014
    Inventors: Aleksander Labuda, Jason Cleveland, Deron Walters, Roger Proksch
  • Publication number: 20140092469
    Abstract: Optical microscopy of biological specimens, particularly live cells, is difficult as they generally lack sufficient contrast to be studied successfully as typically the internal structures of the cell are colourless and transparent. Commonly, contrast is increased by staining the different structures with selective dyes, but this involves killing and fixing the sample. Staining may also introduce artifacts, apparent structural details caused by the processing of the specimen and are thus not a legitimate feature of the specimen. Further, microscopy of different elements of these biological specimens typically requires multiple microscopy techniques on multiple specimens. According to embodiments of the invention simultaneous imaging techniques are applied to a biological specimen such as fluorescent imaging and dark field imaging by designing an experimental evaluation system and associated illumination system addressing the conflicting demands of these approaches.
    Type: Application
    Filed: October 1, 2012
    Publication date: April 3, 2014
    Applicant: The Royal Institution for the Advancement of Learning / McGill University
    Inventors: Dilson Rassier, Albert Kalganov, Aleksander Labuda
  • Patent number: 8667611
    Abstract: Atomic Force Microscopes (AFMs) allow forces within systems under observation to be probed from the piconewton forces of a single covalent bond to the forces exerted by cells in the micronewton range. The pendulum geometry prevents the snap-to-contact problem afflicting soft cantilevers in AFMs which enable attonewton force sensitivity. However, the microscopic length scale studies of cellular/subcellular forces parallel to the imaging plane of an optical microscope requires high sensitivity force measurements at high sampling frequencies despite the difficulties of implementing the pendulum geometry from constraints imposed by the focused incoming/outgoing light interfering with the sample surface. Additionally measurement systems for biological tissue samples in vitro must satisfy complex physical constraints to provide access to the vertical cantilever.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: March 4, 2014
    Assignee: The Royal Institution for the Advancement of Learning/McGill University
    Inventors: Dilson Rassier, Aleksander Labuda
  • Publication number: 20110271411
    Abstract: Atomic Force Microscopes (AFMs) allow forces within systems under observation to be probed from the piconewton forces of a single covalent bond to the forces exerted by cells in the micronewton range. The pendulum geometry prevents the snap-to-contact problem afflicting soft cantilevers in AFMs which enable attonewton force sensitivity. However, the microscopic length scale studies of cellular/subcellular forces parallel to the imaging plane of an optical microscope requires high sensitivity force measurements at high sampling frequencies despite the difficulties of implementing the pendulum geometry from constraints imposed by the focused incoming/outgoing light interfering with the sample surface. Additionally measurement systems for biological tissue samples in vitro must satisfy complex physical constraints to provide access to the vertical cantilever.
    Type: Application
    Filed: April 29, 2011
    Publication date: November 3, 2011
    Applicant: The Royal Institution for the Advancement of Learning / McGill University
    Inventors: Dilson Rassier, Aleksander Labuda