Patents by Inventor Alex J. Schrinsky

Alex J. Schrinsky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9082714
    Abstract: Embodiments of the present disclosure are directed towards use of an etch process post wordline definition to improve data retention in a flash memory device. In one embodiment, a method includes forming a plurality of wordline structures on a substrate, wherein individual wordline structures of the plurality of wordline structures include a control gate having an electrically conductive material and a cap having an electrically insulative material formed on the control gate, depositing an electrically insulative material to form a liner on a surface of the individual wordline structures, and etching the liner to remove at least a portion of the liner. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: July 14, 2015
    Assignee: Intel Corporation
    Inventors: Randy J. Koval, Max F. Hineman, Ronald A. Weimer, Vinayak K. Shamanna, Thomas M. Graettinger, William R. Kueber, Christopher Larsen, Alex J. Schrinsky
  • Publication number: 20140306323
    Abstract: Some embodiments include semiconductor constructions having semiconductor material patterned into two mesas spaced from one another by at least one dummy projection. The dummy projection has a width along a cross-section of X and the mesas have widths along the cross-section of at least 3X. Some embodiments include semiconductor constructions having a memory array region and a peripheral region adjacent the memory array region. Semiconductor material within the peripheral region is patterned into two relatively wide mesas spaced from one another by at least one relatively narrow projection. The relatively narrow projection has a width along a cross-section of X and the relatively wide mesas have widths along the cross-section of at least 3X.
    Type: Application
    Filed: April 10, 2013
    Publication date: October 16, 2014
    Applicant: Micron Technology, Inc.
    Inventors: Chris Larsen, Alex J. Schrinsky, John D. Hopkins, Matthew King
  • Publication number: 20130264628
    Abstract: Embodiments of the present disclosure describe techniques and configurations relating to use of an etch process post wordline definition to improve data retention in a flash memory device. In one embodiment, a method includes forming a plurality of wordline structures on a substrate, wherein individual wordline structures of the plurality of wordline structures include a control gate having an electrically conductive material and a cap having an electrically insulative material formed on the control gate, depositing an electrically insulative material to form a liner on a surface of the individual wordline structures, and etching the liner to remove at least a portion of the liner. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: September 22, 2011
    Publication date: October 10, 2013
    Inventors: Randy J. Koval, Max F. Hineman, Ronald A. Weimer, Vinayak K. Shamanna, Thomas M. Graettinger, William R. Kueber, Christopher Larsen, Alex J. Schrinsky
  • Patent number: 8309424
    Abstract: Some embodiments include methods of forming low k dielectric regions between electrically conductive lines. A construction may be formed to have a plurality of spaced apart electrically conductive lines, and to have sacrificial material between the electrically conductive lines. The sacrificial material may be removed. Subsequently, electrically insulative material may be deposited over and between the lines. The deposition of the insulative material may occur under conditions in which bread-loafing of the insulative material creates bridges of the insulative material across gas-filled gaps between the lines. The gas-filled gaps may be considered to correspond to low k dielectric regions between the electrically conductive lines. In some embodiments the sacrificial material may be carbon. In some embodiments, the deposited insulative material may be a low k dielectric material, and in other embodiments the deposited insulative material may not be a low k dielectric material.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: November 13, 2012
    Assignee: Micron Technology, Inc.
    Inventor: Alex J. Schrinsky
  • Publication number: 20110159685
    Abstract: Some embodiments include methods of forming low k dielectric regions between electrically conductive lines. A construction may be formed to have a plurality of spaced apart electrically conductive lines, and to have sacrificial material between the electrically conductive lines. The sacrificial material may be removed. Subsequently, electrically insulative material may be deposited over and between the lines. The deposition of the insulative material may occur under conditions in which bread-loafing of the insulative material creates bridges of the insulative material across gas-filled gaps between the lines. The gas-filled gaps may be considered to correspond to low k dielectric regions between the electrically conductive lines. In some embodiments the sacrificial material may be carbon. In some embodiments, the deposited insulative material may be a low k dielectric material, and in other embodiments the deposited insulative material may not be a low k dielectric material.
    Type: Application
    Filed: March 9, 2011
    Publication date: June 30, 2011
    Applicant: Micron Technology, Inc.
    Inventor: Alex J. Schrinsky
  • Patent number: 7927964
    Abstract: Some embodiments include methods of forming low k dielectric regions between electrically conductive lines. A construction may be formed to have a plurality of spaced apart electrically conductive lines, and to have sacrificial material between the electrically conductive lines. The sacrificial material may be removed. Subsequently, electrically insulative material may be deposited over and between the lines. The deposition of the insulative material may occur under conditions in which bread-loafing of the insulative material creates bridges of the insulative material across gas-filled gaps between the lines. The gas-filled gaps may be considered to correspond to low k dielectric regions between the electrically conductive lines. In some embodiments the sacrificial material may be carbon. In some embodiments, the deposited insulative material may be a low k dielectric material, and in other embodiments the deposited insulative material may not be a low k dielectric material.
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: April 19, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Alex J. Schrinsky
  • Patent number: 7898019
    Abstract: Some embodiments include methods of forming a NAND cell unit having a NAND string gate closest to a select gate with a different width than other NAND string gates more distant from the select gate. Some embodiments include utilization of an etch comprising HBr and O2 to extend a pattern through a carbon-containing layer. The patterned carbon-containing layer may be used to pattern NAND cell unit gates. Some embodiments include structures having a patterned carbon-containing layer defining a NAND cell unit having a NAND string gate closest to a select gate with a different width than other NAND string gates more distant from the select gate.
    Type: Grant
    Filed: December 9, 2008
    Date of Patent: March 1, 2011
    Assignee: Micron Technology, Inc.
    Inventors: David J. Keller, Hongbin Zhu, Alex J. Schrinsky
  • Publication number: 20100291771
    Abstract: Methods of forming a pattern on a substrate include forming carbon-comprising material over a base material, and spaced first features over the carbon-comprising material. Etching is conducted only partially into the carbon-comprising material and spaced second features are formed within the carbon-comprising material which comprise the partially etched carbon-comprising material. Spacers can be formed along sidewalls of the spaced second features. The carbon-comprising material can be etched through to the base material using the spacers as a mask. Spaced third features can be formed which comprise the anisotropically etched spacers and the carbon-comprising material.
    Type: Application
    Filed: May 18, 2009
    Publication date: November 18, 2010
    Inventors: Baosuo Zhou, Alex J. Schrinsky
  • Publication number: 20100120246
    Abstract: Some embodiments include methods of forming low k dielectric regions between electrically conductive lines. A construction may be formed to have a plurality of spaced apart electrically conductive lines, and to have sacrificial material between the electrically conductive lines. The sacrificial material may be removed. Subsequently, electrically insulative material may be deposited over and between the lines. The deposition of the insulative material may occur under conditions in which bread-loafing of the insulative material creates bridges of the insulative material across gas-filled gaps between the lines. The gas-filled gaps may be considered to correspond to low k dielectric regions between the electrically conductive lines. In some embodiments the sacrificial material may be carbon. In some embodiments, the deposited insulative material may be a low k dielectric material, and in other embodiments the deposited insulative material may not be a low k dielectric material.
    Type: Application
    Filed: November 13, 2008
    Publication date: May 13, 2010
    Inventor: Alex J. Schrinsky
  • Publication number: 20090090958
    Abstract: Some embodiments include methods of forming a NAND cell unit having a NAND string gate closest to a select gate with a different width than other NAND string gates more distant from the select gate. Some embodiments include utilization of an etch comprising HBr and O2 to extend a pattern through a carbon-containing layer. The patterned carbon-containing layer may be used to pattern NAND cell unit gates. Some embodiments include structures having a patterned carbon-containing layer defining a NAND cell unit having a NAND string gate closest to a select gate with a different width than other NAND string gates more distant from the select gate.
    Type: Application
    Filed: December 9, 2008
    Publication date: April 9, 2009
    Applicant: Micron Technology, Inc.
    Inventors: David J. Keller, Hongbin Zhu, Alex J. Schrinsky
  • Patent number: 7491641
    Abstract: This invention includes methods of forming conductive lines, and methods of forming conductive contacts adjacent conductive lines. In one implementation, a method of forming a conductive line includes forming a conductive line within an elongated trench within first insulative material over a semiconductive substrate. The conductive line is laterally spaced from opposing first insulative material sidewall surfaces of the trench. The conductive line includes a second conductive material received over a different first conductive material. The second conductive material is recessed relative to an elevationally outer surface of the first insulative material proximate the trench. A second insulative material different from the first insulative material is formed within the trench over a top surface of the conductive line and within laterally opposing spaces received between the first insulative material and the conductive line.
    Type: Grant
    Filed: April 27, 2006
    Date of Patent: February 17, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Scott A. Southwick, Alex J. Schrinsky, Terrence B. McDaniel
  • Patent number: 7476588
    Abstract: Some embodiments include methods of forming a NAND cell unit having a NAND string gate closest to a select gate with a different width than other NAND string gates more distant from the select gate. Some embodiments include utilization of an etch comprising HBr and O2 to extend a pattern through a carbon-containing layer. The patterned carbon-containing layer may be used to pattern NAND cell unit gates. Some embodiments include structures having a patterned carbon-containing layer defining a NAND cell unit having a NAND string gate closest to a select gate with a different width than other NAND string gates more distant from the select gate.
    Type: Grant
    Filed: January 12, 2007
    Date of Patent: January 13, 2009
    Assignee: Micron Technology, Inc.
    Inventors: David J. Keller, Hongbin Zhu, Alex J. Schrinsky
  • Publication number: 20080169496
    Abstract: Some embodiments include methods of forming a NAND cell unit having a NAND string gate closest to a select gate with a different width than other NAND string gates more distant from the select gate. Some embodiments include utilization of an etch comprising HBr and O2 to extend a pattern through a carbon-containing layer. The patterned carbon-containing layer may be used to pattern NAND cell unit gates. Some embodiments include structures having a patterned carbon-containing layer defining a NAND cell unit having a NAND string gate closest to a select gate with a different width than other NAND string gates more distant from the select gate.
    Type: Application
    Filed: January 12, 2007
    Publication date: July 17, 2008
    Inventors: David J. Keller, Hongbin Zhu, Alex J. Schrinsky
  • Patent number: 7118966
    Abstract: This invention includes methods of forming conductive lines, and methods of forming conductive contacts adjacent conductive lines. In one implementation, a method of forming a conductive line includes forming a conductive line within an elongated trench within first insulative material over a semiconductive substrate. The conductive line is laterally spaced from opposing first insulative material sidewall surfaces of the trench. The conductive line includes a second conductive material received over a different first conductive material. The second conductive material is recessed relative to an elevationally outer surface of the first insulative material proximate the trench. A second insulative material different from the first insulative material is formed within the trench over a top surface of the conductive line and within laterally opposing spaces received between the first insulative material and the conductive line.
    Type: Grant
    Filed: August 23, 2004
    Date of Patent: October 10, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Scott A. Southwick, Alex J. Schrinsky, Terrence B. McDaniel