Patents by Inventor Alexander Andrews

Alexander Andrews has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11153985
    Abstract: An electronics package includes a platform and a board mounted to the platform, the board having electronics mounted thereon. A feedthrough pin passes through and is hermetically sealed to a feedthrough body and is wire bonded to the board. A cover is bonded to and surrounds the exterior surface of the feedthrough body to produce a hermetically sealed chamber that houses the platform and the board.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: October 19, 2021
    Assignee: ROSEMOUNT INC.
    Inventors: David Alexander Andrew, David Matthew Strei, James Walters, III, David Cutter
  • Patent number: 11098248
    Abstract: Disclosed herein is a material, comprising a first metal halide that is operative to function as a scintillator; where the first metal halide excludes cesium iodide, strontium iodide, and cesium bromide; and a surface layer comprising a second metal halide that is disposed on a surface of the first metal halide; where the second metal halide has a lower water solubility than the first metal halide.
    Type: Grant
    Filed: August 20, 2018
    Date of Patent: August 24, 2021
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Alexander Andrew Carey, Peter Carl Cohen, Mark S. Andreaco
  • Publication number: 20210184290
    Abstract: A battery pack includes a cassette stack comprising a plurality of battery cell cassettes, each of the cassettes including a plurality of support structures. Each support structure comprises an electrically and thermally conductive frame for receiving at least one battery cell having a first terminal and a second terminal, and a heat pipe. The first terminal is electrically coupled to the frame when the at least one battery cell is mounted in the frame. The heat pipe provides thermal conductivity between the frame and a cooling surface. A method of cooling an electric vehicle including a battery pack comprises aligning the battery pack and a cooling structure, moving the cooling structure into contact with the electric vehicle, and circulating coolant through the cooling structure.
    Type: Application
    Filed: December 11, 2020
    Publication date: June 17, 2021
    Inventors: Edward Thomas Sweet, Luke Asher Wilhelm, Thomas Bloxham, Mischa Alec Pollack, Alexander Andrew Bonderanko
  • Patent number: 10961452
    Abstract: Disclosed herein is a method including manufacturing a powder having a composition of formula (1), M1aM2bM3cM4dO12??(1) where O represents oxygen, M1, M2, M3, and M4 represents a first, second, third, and fourth metal that are different from each other, where the sum of a+b+c+d is about 8, where “a” has a value of about 2 to about 3.5, “b” has a value of 0 to about 5, “c” has a value of 0 to about 5 “d” has a value of 0 to about 1, where “b” and “c”, “b” and “d”, or “c” and “d” cannot both be equal to zero simultaneously, where M1 is a rare earth element comprising gadolinium, yttrium, lutetium, scandium, or a combination of thereof, M2 is aluminum or boron, M3 is gallium, and M4 is a dopant; and heating the powder to a temperature of 500 to 1700° C. in an oxygen containing atmosphere to manufacture a crystalline scintillator.
    Type: Grant
    Filed: February 4, 2019
    Date of Patent: March 30, 2021
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Peter Carl Cohen, Alexander Andrew Carey, Mark S. Andreaco
  • Patent number: 10774440
    Abstract: A method of growing a rare-earth oxyorthosilicate crystal, and crystals grown using the method are disclosed. The method includes preparing a melt by melting a first substance including at least one first rare-earth element and providing an atmosphere that includes an inert gas and a gas including oxygen.
    Type: Grant
    Filed: January 18, 2019
    Date of Patent: September 15, 2020
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Mark S. Andreaco, Peter Carl Cohen, Alexander Andrew Carey
  • Patent number: 10612365
    Abstract: A pressure sensor capsule includes a capsule body, an isolator, a pressure sensor, and a fluid fill pathway. The capsule body defines a process chamber. The isolator is supported by the capsule body and is exposed to the process chamber. The pressure sensor produces a sensor output that is indicative of a pressure within an interior chamber, which is isolated from the process chamber by the isolator. The fluid fill pathway extends from the process chamber to the interior chamber.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: April 7, 2020
    Assignee: ROSEMOUNT INC.
    Inventors: David Matthew Strei, David Alexander Andrew, Nicholas John Haywood
  • Patent number: 10598559
    Abstract: A pressure sensor assembly for use in sensing a pressure of a process fluid in a high temperature environment includes an elongate sensor housing configured to be exposed to the process fluid and having a cavity formed therein. A pressure sensor is positioned in the cavity of the elongate sensor housing. The pressure sensor has at least one diaphragm that deflects in response to applied pressure and includes an electrical component having an electrical property which changes as a function of deflection of the at least one diaphragm which is indicative of applied pressure. A flexible membrane in contact with the at least one diaphragm is disposed to seal at least a portion of the cavity of the sensor housing from the process fluid and flexes in response to pressure applied by the process fluid to thereby cause deflection of the at least one diaphragm.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: March 24, 2020
    Assignee: ROSEMOUNT INC.
    Inventors: David Alexander Andrew, David Matthew Strei
  • Publication number: 20190169499
    Abstract: Disclosed herein is a method including manufacturing a powder having a composition of formula (1), M1aM2bM3cM4dO12??(1) where O represents oxygen, M1, M2, M3, and M4 represents a first, second, third, and fourth metal that are different from each other, where the sum of a+b+c+d is about 8, where “a” has a value of about 2 to about 3.5, “b” has a value of 0 to about 5, “c” has a value of 0 to about 5 “d” has a value of 0 to about 1, where “b” and “c”, “b” and “d”, or “c” and “d” cannot both be equal to zero simultaneously, where M1 is a rare earth element comprising gadolinium, yttrium, lutetium, scandium, or a combination of thereof, M2 is aluminum or boron, M3 is gallium, and M4 is a dopant; and heating the powder to a temperature of 500 to 1700° C. in an oxygen containing atmosphere to manufacture a crystalline scintillator.
    Type: Application
    Filed: February 4, 2019
    Publication date: June 6, 2019
    Inventors: Peter Carl Cohen, Alexander Andrew Carey, Mark S. Andreaco
  • Publication number: 20190153614
    Abstract: A method of growing a rare-earth oxyorthosilicate crystal, and crystals grown using the method are disclosed. The method includes preparing a melt by melting a first substance including at least one first rare-earth element and providing an atmosphere that includes an inert gas and a gas including oxygen.
    Type: Application
    Filed: January 18, 2019
    Publication date: May 23, 2019
    Inventors: Mark S. Andreaco, Peter Carl Cohen, Alexander Andrew Carey
  • Publication number: 20190100991
    Abstract: A pressure sensor capsule includes a capsule body, an isolator, a pressure sensor, and a fluid fill pathway. The capsule body defines a process chamber. The isolator is supported by the capsule body and is exposed to the process chamber. The pressure sensor produces a sensor output that is indicative of a pressure within an interior chamber, which is isolated from the process chamber by the isolator. The fluid fill pathway extends from the process chamber to the interior chamber.
    Type: Application
    Filed: September 29, 2017
    Publication date: April 4, 2019
    Inventors: David Matthew Strei, David Alexander Andrew, Nicholas John Haywood
  • Patent number: 10227709
    Abstract: A method of growing a rare-earth oxyorthosilicate crystal, and crystals grown using the method are disclosed. The method includes preparing a melt by melting a first substance including at least one first rare-earth element and providing an atmosphere that includes an inert gas and a gas including oxygen.
    Type: Grant
    Filed: February 17, 2015
    Date of Patent: March 12, 2019
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Mark S. Andreaco, Peter Carl Cohen, Alexander Andrew Carey
  • Patent number: 10197685
    Abstract: Disclosed herein is a method including manufacturing a powder having a composition of formula (1), M1aM2bM3cM4dO12??(1) where O represents oxygen, M1, M2, M3, and M4 represents a first, second, third, and fourth metal that are different from each other, where the sum of a+b+c+d is about 8, where “a” has a value of about 2 to about 3.5, “b” has a value of 0 to about 5, “c” has a value of 0 to about 5 “d” has a value of 0 to about 1, where “b” and “c”, “b” and “d”, or “c” and “d” cannot both be equal to zero simultaneously, where M1 is a rare earth element comprising gadolinium, yttrium, lutetium, scandium, or a combination of thereof, M2 is aluminum or boron, M3 is gallium, and M4 is a codopant; and heating the powder to a temperature of 500 to 1700° C. in an oxygen containing atmosphere to manufacture a crystalline scintillator.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: February 5, 2019
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Peter Carl Cohen, Alexander Andrew Carey, Mark S. Andreaco
  • Publication number: 20190008062
    Abstract: An electronics package includes a platform and a board mounted to the platform, the board having electronics mounted thereon. A feedthrough pin passes through and is hermetically sealed to a feedthrough body and is wire bonded to the board. A cover is bonded to and surrounds the exterior surface of the feedthrough body to produce a hermetically sealed chamber that houses the platform and the board.
    Type: Application
    Filed: June 29, 2017
    Publication date: January 3, 2019
    Inventors: David Alexander Andrew, David Matthew Strei, James Walters, III, David Cutter
  • Publication number: 20190003914
    Abstract: A pressure sensor assembly for use in sensing a pressure of a process fluid in a high temperature environment includes an elongate sensor housing configured to be exposed to the process fluid and having a cavity formed therein. A pressure sensor is positioned in the cavity of the elongate sensor housing. The pressure sensor has at least one diaphragm that deflects in response to applied pressure and includes an electrical component having an electrical property which changes as a function of deflection of the at least one diaphragm which is indicative of applied pressure. A flexible membrane in contact with the at least one diaphragm is disposed to seal at least a portion of the cavity of the sensor housing from the process fluid and flexes in response to pressure applied by the process fluid to thereby cause deflection of the at least one diaphragm.
    Type: Application
    Filed: June 29, 2017
    Publication date: January 3, 2019
    Inventors: David Alexander Andrew, David Matthew Strei
  • Publication number: 20180355245
    Abstract: Disclosed herein is a material, comprising a first metal halide that is operative to function as a scintillator; where the first metal halide excludes cesium iodide, strontium iodide, and cesium bromide; and a surface layer comprising a second metal halide that is disposed on a surface of the first metal halide; where the second metal halide has a lower water solubility than the first metal halide.
    Type: Application
    Filed: August 20, 2018
    Publication date: December 13, 2018
    Inventors: Alexander Andrew Carey, Peter Carl Cohen, Mark S. Andreaco
  • Patent number: 10087367
    Abstract: A halide material, such as scintillator crystals of LaBr3:Ce and SrI2:Eu, with a passivation surface layer is disclosed. The surface layer comprises one or more halides of lower water solubility than the scintillator crystal that the surface layer covers. A method for making such a material is also disclosed. In certain aspects of the disclosure, a passivation layer is formed on a surface of a halide material such as a scintillator crystal of LaBr3:Ce of SrI2:Eu by fluorinating the surface with a fluorinating agent, such as F2 for LaBr3:Ce and HF for SrI2:Eu.
    Type: Grant
    Filed: January 13, 2016
    Date of Patent: October 2, 2018
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Alexander Andrew Carey, Peter Carl Cohen, Mark S. Andreaco
  • Publication number: 20180223186
    Abstract: The present disclosure discloses, in one arrangement, a scintillator material made of a metal halide with one or more additional group-13 elements. An example of such a compound is Ce:LaBr3 with thallium (Tl) added, either as a codopant or in a stoichiometric admixture and/or solid solution between LaBr3 and TlBr. In another arrangement, the above single crystalline iodide scintillator material can be made by first synthesizing a compound of the above composition and then forming a single crystal from the synthesized compound by, for example, the Vertical Gradient Freeze method. Applications of the scintillator materials include radiation detectors and their use in medical and security imaging.
    Type: Application
    Filed: March 30, 2018
    Publication date: August 9, 2018
    Inventors: Peter Carl Cohen, Alexander Andrew Carey, Mark S. Andreaco, Matthias J. Schmand
  • Patent number: 9673596
    Abstract: A weatherproof back box for receiving a fire alarm notification or other fire alarm device includes a back wall and sidewalls that project from the back wall and define a mouth. The sidewalls further include recessed portions that extend from the back wall toward the mouth, and end prior to the mouth. The back box further includes mounting posts, which are preferably less than 50% of the depth of the back box, that project from the recessed portions into the mouth. Additionally, these mounting posts receive fasteners for securing the fire alarm notification device in the mouth of the back box.
    Type: Grant
    Filed: June 30, 2014
    Date of Patent: June 6, 2017
    Assignee: Tyco Fire & Security GmbH
    Inventors: James T. Roberts, Alexander Andrews
  • Publication number: 20170153335
    Abstract: Disclosed herein is a method including manufacturing a powder having a composition of formula (1), M1aM2bM3cM4dO12??(1) where O represents oxygen, M1, M2, M3, and M4 represents a first, second, third, and fourth metal that are different from each other, where the sum of a+b+c+d is about 8, where “a” has a value of about 2 to about 3.5, “b” has a value of 0 to about 5, “c” has a value of 0 to about 5 “d” has a value of 0 to about 1, where “b” and “c”, “b” and “d”, or “c” and “d” cannot both be equal to zero simultaneously, where M1 is a rare earth element comprising gadolinium, yttrium, lutetium, scandium, or a combination of thereof, M2 is aluminum or boron, M3 is gallium, and M4 is a codopant; and heating the powder to a temperature of 500 to 1700° C. in an oxygen containing atmosphere to manufacture a crystalline scintillator.
    Type: Application
    Filed: December 1, 2015
    Publication date: June 1, 2017
    Inventors: Peter Carl Cohen, Alexander Andrew Carey, Mark S. Andreaco
  • Patent number: 9664800
    Abstract: A scintillator element is disclosed where the scintillator element includes a scintillator formed of a scintillation material capable of converting non-visible radiation into scintillation light, wherein the scintillator has a plurality of laser-etched micro-voids within the scintillator, each micro-void having an interior surface, and an intrinsic reflective layer is formed on the interior surface of at least some of the micro-voids, wherein the intrinsic reflective layer is formed from the scintillation material.
    Type: Grant
    Filed: February 19, 2016
    Date of Patent: May 30, 2017
    Assignees: University of Tennessee Research Foundation, Siemens Medical Solutions USA, Inc.
    Inventors: Mark S. Andreaco, Peter Carl Cohen, Matthias J. Schmand, James L. Corbeil, Alexander Andrew Carey, Robert A. Mintzer, Charles L. Melcher, Merry A. Koschan