Patents by Inventor Alexander Dobrinsky

Alexander Dobrinsky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150297768
    Abstract: A solution in which an ultraviolet radiation source is mounted on a flexible substrate is provided. The flexible substrate is capable of having a deformation curvature of at least 0.1 inverse meters. The flexible substrate may be incorporated within an existing enclosure or included in the enclosure. The flexible substrate can be utilized as part of a solution for disinfecting one or more items located within the enclosure. In this case, while the items are within the enclosure, ultraviolet radiation is generated and directed at the items. Wiring for the ultraviolet radiation source can be embedded within the flexible substrate and the flexible substrate can have at least one of: a wave-guiding structure, an ultraviolet absorbing surface, or an ultraviolet reflective surface. A control system can be utilized to manage generation of the ultraviolet radiation within the enclosure.
    Type: Application
    Filed: June 30, 2015
    Publication date: October 22, 2015
    Applicant: SENSOR ELECTRONIC TECHNOLOGY, INC.
    Inventors: Timothy James Bettles, Alexander Dobrinsky, Michael Shur, Remigijus Gaska
  • Publication number: 20150297767
    Abstract: A system for sterilizing at least one surface of an object is provided. The system includes a set of ultraviolet radiation sources and a set of wave guiding structures configured to direct ultraviolet radiation having a set of target attributes to a desired location on at least one surface of the object. The set of wave guiding structures can include at least one ultraviolet reflective surface having an ultraviolet reflection coefficient of at least thirty percent. Furthermore, the system can include a computer system for operating the ultraviolet radiation sources to deliver a target dose of ultraviolet radiation to the at least one target surface of the object.
    Type: Application
    Filed: June 23, 2015
    Publication date: October 22, 2015
    Applicant: SENSOR ELECTRONIC TECHNOLOGY, INC.
    Inventors: Remigijus Gaska, Michael Shur, Alexander Dobrinsky, Timothy James Bettles, Maxim S. Shatalov
  • Publication number: 20150295133
    Abstract: A heterostructure for use in fabricating an optoelectronic device is provided. The heterostructure includes a layer, such as an n-type contact or cladding layer, that includes thin sub-layers inserted therein. The thin sub-layers can be spaced throughout the layer and separated by intervening sub-layers fabricated of the material for the layer. The thin sub-layers can have a distinct composition from the intervening sub-layers, which alters stresses present during growth of the heterostructure.
    Type: Application
    Filed: April 15, 2015
    Publication date: October 15, 2015
    Applicant: SENSOR ELECTRONIC TECHNOLOGY, INC.
    Inventors: Daniel D. Billingsley, Robert M. Kennedy, Wenhong Sun, Rakesh Jain, Maxim S. Shatalov, Alexander Dobrinsky, Michael Shur, Remigijus Gaska
  • Publication number: 20150295155
    Abstract: A structured substrate configured for epitaxial growth of a semiconductor layer thereon is provided. Structures can be formed on a side of the structured substrate opposite that of the growth surface for the semiconductor layer. The structures can include cavities and/or pillars, which can be patterned, randomly distributed, and/or the like. The structures can be configured to modify one or more properties of the substrate material such that growth of a higher quality semiconductor layer can be obtained.
    Type: Application
    Filed: April 10, 2015
    Publication date: October 15, 2015
    Applicant: SENSOR ELECTRONIC TECHNOLOGY, INC.
    Inventors: Michael Shur, Maxim S. Shatalov, Alexander Dobrinsky, Remigijus Gaska
  • Publication number: 20150295127
    Abstract: A composite substrate configured for epitaxial growth of a semiconductor layer thereon is provided. The composite substrate includes multiple substrate layers formed of different materials having different thermal expansion coefficients. The thermal expansion coefficient of the material of the semiconductor layer can be between the thermal coefficients of the substrate layer materials. The composite substrate can have a composite thermal expansion coefficient configured to reduce an amount of tensile stress within the semiconductor layer at room temperature and/or an operating temperature for a device fabricated using the heterostructure.
    Type: Application
    Filed: April 10, 2015
    Publication date: October 15, 2015
    Applicant: SENSOR ELECTRONIC TECHNOLOGY, INC.
    Inventors: Michael Shur, Maxim S. Shatalov, Alexander Dobrinsky, Remigijus Gaska
  • Patent number: 9142741
    Abstract: A profiled surface for improving the propagation of radiation through an interface is provided. The profiled surface includes a set of large roughness components providing a first variation of the profiled surface having a characteristic scale approximately an order of magnitude larger than a target wavelength of the radiation. The profiled surface also includes a set of small roughness components superimposed on the set of large roughness components and providing a second variation of the profiled surface having a characteristic scale on the order of the target wavelength of the radiation.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: September 22, 2015
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Maxim S. Shatalov, Alexander Dobrinsky, Michael Shur, Remigijus Gaska
  • Patent number: 9138499
    Abstract: A solution for disinfecting electronic devices is provided. An ultraviolet radiation source is embedded within an ultraviolet absorbent case. While the electronic device is within the ultraviolet absorbent case, ultraviolent radiation is directed at the electronic device. A monitoring and control system monitors a plurality of attributes for the electronic device, which can include: a frequency of usage for the device, a biological activity at a surface of the device, and a disinfection schedule history for the device. Furthermore, the monitoring and control system can detect whether the device is being used. Based on the monitoring, the monitoring and control system controls the ultraviolet radiation directed at the electronic device.
    Type: Grant
    Filed: December 30, 2013
    Date of Patent: September 22, 2015
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Timothy James Bettles, Yuri Bilenko, Saulius Smetona, Alexander Dobrinsky, Michael Shur, Remigijus Gaska
  • Publication number: 20150255672
    Abstract: A device including one or more layers with lateral regions configured to facilitate the transmission of radiation through the layer and lateral regions configured to facilitate current flow through the layer is provided. The layer can comprise a short period superlattice, which includes barriers alternating with wells. In this case, the barriers can include both transparent regions, which are configured to reduce an amount of radiation that is absorbed in the layer, and higher conductive regions, which are configured to keep the voltage drop across the layer within a desired range.
    Type: Application
    Filed: May 26, 2015
    Publication date: September 10, 2015
    Applicant: SENSOR ELECTRONIC TECHNOLOGY, INC.
    Inventors: Michael Shur, Maxim S. Shatalov, Alexander Dobrinsky, Remigijus Gaska, Jinwei Yang
  • Publication number: 20150250907
    Abstract: A solution for disinfecting a screen of an item using ultraviolet radiation is provided. The solution can provide an electronic device including a screen utilized by a user of the electronic device. The screen can be an ultraviolet transparent screen that covers at least some of the internal portion of the electronic device and a set of ultraviolet radiation sources can be located adjacent to the transparent screen. The set of ultraviolet radiation sources can be configured to generate ultraviolet radiation directed towards an external surface of the ultraviolet transparent screen. The electronic device can further include a monitoring and control system, which can manage the ultraviolet radiation generation by monitoring a set of attributes relating to the external surface of the screen and controlling, based on the monitoring, ultraviolet radiation directed at the external surface of the screen.
    Type: Application
    Filed: March 6, 2015
    Publication date: September 10, 2015
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Yuri Bilenko, Alexander Dobrinsky, Michael Shur
  • Publication number: 20150238645
    Abstract: A solution for disinfecting an area using ultraviolet radiation is provided. The solution can include an enclosure including at least one ultraviolet transparent window and a set of ultraviolet radiation sources located adjacent to the at least one ultraviolet transparent window. The set of ultraviolet radiation sources can be configured to generate ultraviolet radiation directed through the at least one ultraviolet transparent window. An input unit can be located on the enclosure and configured to generate an electrical signal in response to pressure applied to the enclosure. A control unit can be configured to manage the ultraviolet radiation by monitoring the electrical signal generated by the input unit and controlling, based on the monitoring, the ultraviolet radiation generated by the set of ultraviolet radiation sources.
    Type: Application
    Filed: February 25, 2015
    Publication date: August 27, 2015
    Applicant: SENSOR ELECTRONIC TECHNOLOGY, INC.
    Inventors: Igor Agafonov, Alexander Dobrinsky, Michael Shur, Remigijus Gaska, Saulius Smetona
  • Publication number: 20150243841
    Abstract: A semiconductor structure comprising a buffer structure and a set of semiconductor layers formed adjacent to a first side of the buffer structure is provided. The buffer structure can have an effective lattice constant and a thickness such that an overall stress in the set of semiconductor layers at room temperature is compressive and is in a range between approximately 0.1 GPa and 2.0 GPa. The buffer structure can be grown using a set of growth parameters selected to achieve the target effective lattice constant a, control stresses present during growth of the buffer structure, and/or control stresses present after the semiconductor structure has cooled.
    Type: Application
    Filed: February 22, 2015
    Publication date: August 27, 2015
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Maxim S. Shatalov, Jinwei Yang, Alexander Dobrinsky, Michael Shur, Remigijus Gaska
  • Publication number: 20150228855
    Abstract: A profiled surface for improving the propagation of radiation through an interface is provided. The profiled surface includes a set of large roughness components providing a first variation of the profiled surface having a characteristic scale approximately an order of magnitude larger than a target wavelength of the radiation. The set of large roughness components can include a series of truncated shapes. The profiled surface also includes a set of small roughness components superimposed on the set of large roughness components and providing a second variation of the profiled surface having a characteristic scale on the order of the target wavelength of the radiation.
    Type: Application
    Filed: June 6, 2014
    Publication date: August 13, 2015
    Applicant: SENSOR ELECTRONIC TECHNOLOGY, INC.
    Inventors: Maxim S. Shatalov, Alexander Dobrinsky, Michael Shur, Remigijus Gaska
  • Patent number: 9105792
    Abstract: A method of fabricating a device using a layer with a patterned surface for improving the growth of semiconductor layers, such as group III nitride-based semiconductor layers with a high concentration of aluminum, is provided. The patterned surface can include a substantially flat top surface and a plurality of stress reducing regions, such as openings. The substantially flat top surface can have a root mean square roughness less than approximately 0.5 nanometers, and the stress reducing regions can have a characteristic size between approximately 0.1 microns and approximately five microns and a depth of at least 0.2 microns. A layer of group-III nitride material can be grown on the first layer and have a thickness at least twice the characteristic size of the stress reducing regions.
    Type: Grant
    Filed: October 9, 2012
    Date of Patent: August 11, 2015
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Rakesh Jain, Wenhong Sun, Jinwei Yang, Maxim S. Shatalov, Alexander Dobrinsky, Michael Shur, Remigijus Gaska
  • Publication number: 20150217011
    Abstract: A solution for disinfecting flowable products, such as liquids, suspensions, creams, colloids, emulsions, powders, and/or the like, as well as accessories and products relating thereto, such as containers, caps, brushes, applicators, and/or the like, using ultraviolet radiation is provided. In an embodiment, an ultraviolet impermeable cap is configured to enclose a volume corresponding to a flowable product. At least one ultraviolet radiation source can be mounted on the cap and be configured to generate ultraviolet radiation for disinfecting the enclosed area. The ultraviolet radiation source can be configured to only generate ultraviolet radiation when the volume is enclosed by the ultraviolet impermeable cap.
    Type: Application
    Filed: April 14, 2015
    Publication date: August 6, 2015
    Applicant: SENSOR ELECTRONIC TECHNOLOGY, INC.
    Inventors: Timothy James Bettles, Alexander Dobrinsky, Michael Shur, Remigijus Gaska
  • Publication number: 20150207029
    Abstract: A superlattice layer including a plurality of periods, each of which is formed from a plurality of sub-layers is provided. Each sub-layer comprises a different composition than the adjacent sub-layer(s) and comprises a polarization that is opposite a polarization of the adjacent sub-layer(s). In this manner, the polarizations of the respective adjacent sub-layers compensate for one another. Furthermore, the superlattice layer can be configured to be at least partially transparent to radiation, such as ultraviolet radiation.
    Type: Application
    Filed: March 31, 2015
    Publication date: July 23, 2015
    Applicant: SENSOR ELECTRONIC TECHNOLOGY, INC.
    Inventors: Michael Shur, Remigijus Gaska, Jinwei Yang, Alexander Dobrinsky
  • Patent number: 9066987
    Abstract: A solution in which an ultraviolet radiation source is mounted on a flexible substrate is provided. The flexible substrate is capable of having a deformation curvature of at least 0.1 inverse meters. The flexible substrate may be incorporated within an existing enclosure or included in the enclosure. The flexible substrate can be utilized as part of a solution for disinfecting one or more items located within the enclosure. In this case, while the items are within the enclosure, ultraviolet radiation is generated and directed at the items. Wiring for the ultraviolet radiation source can be embedded within the flexible substrate and the flexible substrate can have at least one of: a wave-guiding structure, an ultraviolet absorbing surface, or an ultraviolet reflective surface. A control system can be utilized to manage generation of the ultraviolet radiation within the enclosure.
    Type: Grant
    Filed: March 18, 2014
    Date of Patent: June 30, 2015
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Timothy James Bettles, Alexander Dobrinsky, Michael Shur, Remigijus Gaska
  • Publication number: 20150179751
    Abstract: A perforating ohmic contact to a semiconductor layer in a semiconductor structure is provided. The perforating ohmic contact can include a set of perforating elements, which can include a set of metal protrusions laterally penetrating the semiconductor layer(s). The perforating elements can be separated from one another by a characteristic length scale selected based on a sheet resistance of the semiconductor layer and a contact resistance per unit length of a metal of the perforating ohmic contact contacting the semiconductor layer. The structure can be annealed using a set of conditions configured to ensure formation of the set of metal protrusions.
    Type: Application
    Filed: March 3, 2015
    Publication date: June 25, 2015
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Mikhail Gaevski, Grigory Simin, Maxim S. Shatalov, Alexander Dobrinsky, Michael Shur, Remigijus Gaska
  • Patent number: 9061082
    Abstract: A system for sterilizing at least one surface of an object is provided. The system includes a set of ultraviolet radiation sources and a set of wave guiding structures configured to direct ultraviolet radiation having a set of target attributes to a desired location on at least one surface of the object. The set of wave guiding structures can include at least one ultraviolet reflective surface having an ultraviolet reflection coefficient of at least thirty percent. Furthermore, the system can include a computer system for operating the ultraviolet radiation sources to deliver a target dose of ultraviolet radiation to the at least one target surface of the object.
    Type: Grant
    Filed: April 16, 2013
    Date of Patent: June 23, 2015
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Remigijus Gaska, Michael Shur, Alexander Dobrinsky, Timothy James Bettles, Maxim S Shatalov
  • Publication number: 20150165079
    Abstract: Ultraviolet radiation is directed within an area. Items located within the area and/or one or more conditions of the area are monitored over a period of time. Based on the monitoring, ultraviolet radiation sources are controlled by adjusting a direction, an intensity, a pattern, and/or a spectral power of the ultraviolet radiation generated by the ultraviolet radiation source. Adjustments to the ultraviolet radiation source(s) can correspond to one of a plurality of selectable operating configurations including a storage life preservation operating configuration, a disinfection operating configuration, and an ethylene decomposition operating configuration.
    Type: Application
    Filed: February 24, 2015
    Publication date: June 18, 2015
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Michael Shur, Maxim S. Shatalov, Timothy James Bettles, Yuri Bilenko, Saulius Smetona, Alexander Dobrinsky, Remigijus Gaska, Igor Agafonov
  • Patent number: 9048378
    Abstract: An interface including roughness components for improving the propagation of radiation through the interface is provided. The interface includes a first profiled surface of a first layer comprising a set of large roughness components providing a first variation of the first profiled surface having a first characteristic scale and a second profiled surface of a second layer comprising a set of small roughness components providing a second variation of the second profiled surface having a second characteristic scale. The first characteristic scale is approximately an order of magnitude larger than the second characteristic scale. The surfaces can be bonded together using a bonding material, and a filler material also can be present in the interface.
    Type: Grant
    Filed: June 15, 2012
    Date of Patent: June 2, 2015
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Maxim S. Shatalov, Alexander Dobrinsky, Michael Shur, Remigijus Gaska