Patents by Inventor Alexander Dobrinsky

Alexander Dobrinsky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10490713
    Abstract: A composite material, which can be used as an encapsulant for an ultraviolet device, is provided. The composite material includes a matrix material and at least one filler material incorporated in the matrix material that are both at least partially transparent to ultraviolet radiation of a target wavelength. The filler material includes microparticles and/or nanoparticles and can have a thermal coefficient of expansion significantly smaller than a thermal coefficient of expansion of the matrix material for relevant atmospheric conditions. The relevant atmospheric conditions can include a temperature and a pressure present during each of: a curing and a cool down process for fabrication of a device package including the composite material and normal operation of the ultraviolet device within the device package.
    Type: Grant
    Filed: December 23, 2016
    Date of Patent: November 26, 2019
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Remigijus Gaska, Maxim S. Shatalov, Alexander Dobrinsky, Jinwei Yang, Michael Shur
  • Patent number: 10490697
    Abstract: A solution for fabricating a semiconductor structure is provided. The semiconductor structure includes a plurality of semiconductor layers grown over a substrate using a set of epitaxial growth periods. During each epitaxial growth period, a first semiconductor layer having one of: a tensile stress or a compressive stress is grown followed by growth of a second semiconductor layer having the other of: the tensile stress or the compressive stress directly on the first semiconductor layer.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: November 26, 2019
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Rakesh Jain, Wenhong Sun, Jinwei Yang, Maxim S. Shatalov, Alexander Dobrinsky, Remigijus Gaska, Michael Shur, Brandon Robinson
  • Patent number: 10478515
    Abstract: Ultraviolet radiation is directed within an area. The target wavelength ranges and/or target intensity ranges of the ultraviolet radiation sources can correspond to at least one of a plurality of selectable operating configurations including a virus destruction operating configuration and a bacteria disinfection operating configuration. Each configuration can include a unique combination of the target wavelength range and target intensity range.
    Type: Grant
    Filed: June 13, 2017
    Date of Patent: November 19, 2019
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Michael Shur, Maxim S. Shatalov, Timothy James Bettles, Yuri Bilenko, Saulius Smetona, Alexander Dobrinsky, Remigijus Gaska
  • Publication number: 20190336629
    Abstract: A solution for cleaning and/or sterilizing one or more surfaces in a bathroom is provided. The sterilization can be performed using ultraviolet sources, which can emit ultraviolet radiation directed onto the surface(s). The cleaning can be performed using a fluid, such as water, that is flowed over the surface(s). The surface(s) can include at least a seat of a toilet and/or other surfaces associated with the toilet.
    Type: Application
    Filed: July 2, 2019
    Publication date: November 7, 2019
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Alexander Dobrinsky, Michael Shur, Remigijus Gaska
  • Patent number: 10456487
    Abstract: An ultraviolet illuminator for providing a cleaning treatment to a medical device is disclosed. The ultraviolet illuminator can include an ultraviolet cleaning treatment system that operates in conjunction with at least one ultraviolet radiation source and sensor to clean surfaces of a medical device for purposes of disinfection, sterilization, and/or sanitization. The ultraviolet illuminator is suitable for a wide variety of medical devices, instruments and equipment. Stethoscopes and medical instrument probes are illustrative examples of some devices that can be used with the ultraviolet illuminator.
    Type: Grant
    Filed: June 4, 2018
    Date of Patent: October 29, 2019
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Yuri Bilenko, Timothy James Bettles, Alexander Dobrinsky, Michael Shur
  • Patent number: 10456488
    Abstract: A solution for disinfecting an ultraviolet transparent structure and/or an item placed on or near the structure is provided. The solution can utilize a set of ultraviolet radiation sources configured to generate ultraviolet radiation through the internal surface of the ultraviolet transparent structure towards the external surface and out to an ambient environment for disinfection of the external surface and/or a targeted item. A first set of sources can generate a scattered type of radiation that uniformly disinfects the external surface of the ultraviolet transparent structure and a second set of sources can generate a focused type of radiation that disinfects at least one portion of the targeted item. A control system can direct the first set of sources to generate the scattered radiation towards the external surface of the ultraviolet transparent structure and direct the second set of sources to generate the focused radiation at the targeted item.
    Type: Grant
    Filed: September 26, 2018
    Date of Patent: October 29, 2019
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Yuri Bilenko, Alexander Dobrinsky, Michael Shur
  • Patent number: 10461221
    Abstract: A semiconductor structure for use in fabricating a semiconductor device having improved light propagation is provided. The structure includes at least one layer transparent to radiation having a target wavelength relevant to operation of the semiconductor device. During operation of the semiconductor device, radiation of the target wavelength enters the transparent layer through a first side and exits the transparent layer through a second side. At least one of the first side or the second side comprises a profiled surface. The profiled surface includes a plurality of vacancies fabricated in the material of the layer. Each vacancy comprises side walls configured for at least partial diffusive scattering of the radiation of the target wavelength.
    Type: Grant
    Filed: January 18, 2017
    Date of Patent: October 29, 2019
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Alexander Dobrinsky, Michael Shur
  • Patent number: 10456486
    Abstract: A solution for generating ultraviolet diffusive radiation is provided. A diffusive ultraviolet radiation illuminator includes at least one ultraviolet radiation source located within a reflective cavity that includes a plurality of surfaces. At least one of the plurality of surfaces can be configured to diffusively reflect at least 70% of the ultraviolet radiation and at least one of the plurality of surfaces can be configured to transmit at least 30% of the ultraviolet radiation and reflect at least 10% of the ultraviolet radiation.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: October 29, 2019
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Saulius Smetona, Alexander Dobrinsky, Yuri Bilenko, Michael Shur
  • Patent number: 10454006
    Abstract: A semiconductor structure including an anodic aluminum oxide layer is described. The anodic aluminum oxide layer can include a plurality of pores extending to an adjacent surface of the semiconductor structure. A filler material can penetrate at least some of the plurality of pores and directly contact the surface of the semiconductor structure. In an illustrative embodiment, multiple types of filler material at least partially fill the pores of the aluminum oxide layer.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: October 22, 2019
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Michael Shur, Maxim S. Shatalov, Alexander Dobrinsky
  • Patent number: 10442704
    Abstract: A solution for treating a fluid, such as water, is provided. The solution determines an ultraviolet transparency of a fluid before or as the fluid enters a disinfection chamber. In the disinfection chamber, the fluid can be irradiated by ultraviolet radiation to harm microorganisms that may be present in the fluid. One or more attributes of the disinfection chamber, fluid flow, and/or ultraviolet radiation can be adjusted based on the transparency to provide more efficient irradiation and/or higher disinfection rates.
    Type: Grant
    Filed: January 17, 2014
    Date of Patent: October 15, 2019
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Yuri Bilenko, Alexander Dobrinsky, Saulius Smetona, Michael Shur, Remigijus Gaska, Timothy James Bettles
  • Patent number: 10441670
    Abstract: Ultraviolet radiation is directed within an area. Items located within the area and/or one or more conditions of the area are monitored over a period of time. Based on the monitoring, ultraviolet radiation sources are controlled by adjusting a direction, an intensity, a pattern, and/or a spectral power of the ultraviolet radiation generated by the ultraviolet radiation source. Adjustments to the ultraviolet radiation source(s) can correspond to one of a plurality of selectable operating configurations including a storage life preservation operating configuration, a disinfection operating configuration, and an ethylene decomposition operating configuration.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: October 15, 2019
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Michael Shur, Maxim S. Shatalov, Timothy James Bettles, Yuri Bilenko, Saulius Smetona, Alexander Dobrinsky, Remigijus Gaska, Igor Agafonov
  • Patent number: 10433493
    Abstract: An approach for controlling ultraviolet intensity over a surface of a light sensitive object is described. Aspects involve using ultraviolet radiation with a wavelength range that includes ultraviolet-A and ultraviolet-B radiation to irradiate the surface. Light sensors measure light intensity at the surface, wherein each sensor measures light intensity in a wavelength range that corresponds to a wavelength range emitted from at least one of the sources. A controller controls the light intensity over the surface by adjusting the power of the sources as a function of the light intensity measurements. The controller uses the light intensity measurements to determine whether each source is illuminating the surface with an intensity that is within an acceptable variation with a predetermined intensity value targeted for the surface. The controller adjusts the power of the sources as a function of the variation to ensure an optimal distribution of light intensity over the surface.
    Type: Grant
    Filed: September 21, 2017
    Date of Patent: October 8, 2019
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Arthur Peter Barber, III, Maxim S. Shatalov, Alexander Dobrinsky, Michael Shur
  • Publication number: 20190305172
    Abstract: An improved heterostructure for an optoelectronic device is provided. The heterostructure includes an active region, an electron blocking layer, and a p-type contact layer. The p-type contact layer and electron blocking layer can be doped with a p-type dopant. The dopant concentration for the electron blocking layer can be at most ten percent the dopant concentration of the p-type contact layer. A method of designing such a heterostructure is also described.
    Type: Application
    Filed: June 17, 2019
    Publication date: October 3, 2019
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Rakesh Jain, Maxim S. Shatalov, Alexander Dobrinsky, Michael Shur
  • Publication number: 20190298871
    Abstract: Ultraviolet irradiation of food handling instruments for purposes of sterilization, disinfection, cleaning and other treatment capabilities. A housing having receptacles receives one or more food handling instruments. Ultraviolet light emitting sources located about the receptacles can direct ultraviolet light towards the receptacles and any food handling instruments placed therein. One or more sensors located about the receptacles can detect operational conditions associated with the receptacles and any food handling instruments received therein. A control unit, operatively coupled to the ultraviolet light emitting sources and the one or more sensors, manages the irradiation of the receptacles and any food handling instruments in the receptacles as a function of the operational conditions detected by the one or more sensors.
    Type: Application
    Filed: March 29, 2019
    Publication date: October 3, 2019
    Applicant: Sensor Electronic Technology, Inc.
    Inventor: Alexander Dobrinsky
  • Publication number: 20190300391
    Abstract: A solution for irradiating a flowing fluid through a channel with ultraviolet radiation is provided. Ultraviolet radiation sources can be located within the channel in order to direct ultraviolet radiation towards the flowing fluid and/or the interior of the channel. A valve can be located adjacent to the channel to control the flow rate of the fluid. A control system can control and adjust the ultraviolet radiation based on the flow rate of the fluid and a user input component can receive a user input for the control system to adjust the ultraviolet radiation. The ultraviolet radiation sources, the control system, the user input component, and any other components that require electricity can receive power from a rechargeable power supply. An electrical generator located within the channel can convert energy from the fluid flowing through the channel into electricity for charging the rechargeable power supply.
    Type: Application
    Filed: March 29, 2019
    Publication date: October 3, 2019
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Maxim S. Shatalov, Alexander Dobrinsky
  • Publication number: 20190299260
    Abstract: A solution for illuminating an area and/or treating a substance with light, such as ultraviolet radiation, is described. The solution can use one or more solid state ultraviolet sources in conjunction with one or more ultraviolet lamps to illuminate a treatment region with ultraviolet radiation. A control component can individually operate the solid state ultraviolet source(s) and the ultraviolet lamp(s) to illuminate the treatment region with ultraviolet radiation having a predetermined minimum ultraviolet intensity.
    Type: Application
    Filed: March 29, 2019
    Publication date: October 3, 2019
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Maxim S. Shatalov, Alexander Dobrinsky
  • Patent number: 10426852
    Abstract: A system capable of detecting and/or sterilizing surface(s) of an object using ultraviolet radiation is provided. The system can include a disinfection chamber and/or handheld ultraviolet unit, which includes ultraviolet sources for inducing fluorescence in a contaminant and/or sterilizing a surface of an object. The object can comprise a protective suit, which is worn by a user and also can include ultraviolet sources for disinfecting air prior to the air entering the protective suit. The system can be implemented as a multi-tiered system for protecting the user and others from exposure to the contaminant and sterilizing the protective suit after exposure to an environment including the contaminant.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: October 1, 2019
    Assignee: Sensor Electronics Technology, Inc.
    Inventors: Alexander Dobrinsky, Michael Shur, Remigijus Gaska, Timothy James Bettles
  • Patent number: 10432839
    Abstract: An electronic utility strap is provided. The strap includes one or more bands, which can be formed of a flexible material, and can include one or more embedded conductive elements. The strap also can include a power source, which can be temporarily attached to the strap or embedded therein. One or more electronic components can be attached to the strap and electrically connected to one or more of the conductive elements. The electronic components can include single use components, which receive power from the power source and operate in conjunction with other electronic components separately attached to the strap. The strap can include an inline imaging device and/or one or more components which can be operated in conjunction with the imaging device.
    Type: Grant
    Filed: February 17, 2017
    Date of Patent: October 1, 2019
    Inventors: Jordan Frank, Alexander Dobrinsky
  • Patent number: 10431711
    Abstract: A semiconductor heterostructure including a polarization doped region is described. The region can correspond to an active region of a device, such as an optoelectronic device. The region includes an n-type semiconductor side and a p-type semiconductor side and can include one or more quantum wells located there between. The n-type and/or p-type semiconductor side can be formed of a group III nitride including aluminum and indium, where a first molar fraction of aluminum nitride and a first molar fraction of indium nitride increase (for the n-type side) or decrease (for the p-type side) along a growth direction to create the n- and/or p-polarizations.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: October 1, 2019
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Alexander Dobrinsky, Michael Shur
  • Patent number: 10429012
    Abstract: A solution for packaging an optoelectronic device by aligning an optical element with respect to the package is provided. After initial placement of the optical element on the device package, an emitted light pattern can be measured and compared to a target light pattern. Subsequently, the position of the optical element can be adjusted. The emitted light pattern can be repeatedly compared to the target light pattern until the emitted light pattern is within an acceptable range of error and the optical element can be secured to the device package.
    Type: Grant
    Filed: January 31, 2017
    Date of Patent: October 1, 2019
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Igor Agafonov, Michael Shur, Alexander Dobrinsky