Patents by Inventor Alexander Epple

Alexander Epple has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240111208
    Abstract: An optical arrangement for a mobile device includes a lens and an image receiver, the installation length L0 of the optical arrangement being no more than 10 millimeters. The image receiver has a curved detector surface. The lens is typically arranged to be displaceable along a center axis relative to the image receiver between a compressed state and an operating state.
    Type: Application
    Filed: September 28, 2023
    Publication date: April 4, 2024
    Inventor: Alexander Epple
  • Publication number: 20230400667
    Abstract: An optical arrangement having a center axis, an object side, an image side, and a catadioptric arrangement is provided. The catadioptric arrangement includes first and second partly reflective optical components, the first optical component including radially inner and radially outer regions, the inner region being configured to be transparent to light incident from the object side, and the outer region being configured to reflect light incident from the object side, the second optical component including a radially inner region and a radially outer region, the outer region being configured to be transparent to light incident from the object side, and the inner region being configured to be transparent to light incident from the object side and to reflect light incident from the image side. At least one further optical component with positive refractive power is arranged at the inner region of the second optical component on the object side.
    Type: Application
    Filed: June 13, 2023
    Publication date: December 14, 2023
    Inventor: Alexander Epple
  • Publication number: 20230400672
    Abstract: An optical arrangement is provided. The optical arrangement has a center axis, an object side, an image side, and a catadioptric arrangement. The optical arrangement has an installation space of no more than 25 millimeters from the object side to the image side along the center axis, and a linear obscuration of no more than 60 percent.
    Type: Application
    Filed: June 13, 2023
    Publication date: December 14, 2023
    Inventors: Alexander Epple, David Shafer, Johannes Stock
  • Publication number: 20230333364
    Abstract: The invention relates to an optical system (7) having an optical axis (OA), having a display unit (5) for displaying an image, having an eyepiece (6) for viewing the image, the eyepiece (6) comprising a lens unit (L1). The display unit (5) is designed in such away that a marginal ray light beam (9) emanates from an edge (8) of the display unit (5) and propagates to the lens unit (L1) in a light incidence direction (L). The display unit (5) is arranged first along the optical axis (OA) in the light incidence direction (L), followed by the lens unit (L1) arranged on the optical axis (OA). No further optical unit of the optical system (7) is arranged between the lens unit (L1) and a pupil of the eye (2). The marginal ray light beam (9) has a chief ray (HS). The chief ray (HS) propagates at a first chief ray height (H1) at the lens unit (L1) and at a second chief ray height (H2) at the display unit (5). The first chief ray height (H1) is at least level with the second chief ray height (H2).
    Type: Application
    Filed: February 13, 2023
    Publication date: October 19, 2023
    Inventors: Alexander Epple, Johannes Zellner, David Shafer, Marco Pretorius
  • Patent number: 11703674
    Abstract: An immersion objective includes a correction group or correcting a spherical aberration. The displacement of the correction group along the optical axis leads to a substantially negligible defocus aberration.
    Type: Grant
    Filed: July 20, 2020
    Date of Patent: July 18, 2023
    Assignee: Carl Zeiss Microscopy
    Inventor: Alexander Epple
  • Patent number: 10969694
    Abstract: A refractive projection lens for imaging a pattern in an object plane of the projection lens into an image plane of the projection lens via electromagnetic radiation of a mercury vapor lamp includes a multiplicity of lens elements are arranged along an optical axis between the object and image planes. The lens elements image a pattern in the object plane into the image plane with a reducing imaging scale. The lens elements include first lens elements made of a first material with a relatively low Abbe number and a second lens elements made of a second material with a higher Abbe number relative to the first material.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: April 6, 2021
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Alexander Epple, David Shafer
  • Publication number: 20210026124
    Abstract: An immersion objective includes a correction group or correcting a spherical aberration. The displacement of the correction group along the optical axis leads to a substantially negligible defocus aberration.
    Type: Application
    Filed: July 20, 2020
    Publication date: January 28, 2021
    Inventor: Alexander Epple
  • Publication number: 20200026199
    Abstract: A refractive projection lens for imaging a pattern in an object plane of the projection lens into an image plane of the projection lens via electromagnetic radiation of a mercury vapor lamp includes a multiplicity of lens elements are arranged along an optical axis between the object and image planes. The lens elements image a pattern in the object plane into the image plane with a reducing imaging scale. The lens elements include first lens elements made of a first material with a relatively low Abbe number and a second lens elements made of a second material with a higher Abbe number relative to the first material.
    Type: Application
    Filed: September 30, 2019
    Publication date: January 23, 2020
    Inventors: Alexander Epple, David Shafer
  • Patent number: 10422985
    Abstract: An optical zoom device for setting an imaging scale of an imaging device, which is configured for imaging an object on an image plane of an image recording device using a microscope objective, comprising an optical element arrangement is disclosed. The optical element arrangement includes an object-side zoom entrance for optical connection to an objective exit, in particular a collimated objective exit, of the microscope objective and includes an image-side zoom exit for optical connection to an image recording entrance of the image recording device.
    Type: Grant
    Filed: November 5, 2014
    Date of Patent: September 24, 2019
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Alexander Epple, Holger Muenz
  • Patent number: 10281824
    Abstract: Microlithography projection objectives for imaging into an image plane a pattern arranged in an object plane are described with respect to suppressing false light in such projection objectives.
    Type: Grant
    Filed: January 24, 2017
    Date of Patent: May 7, 2019
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Heiko Feldmann, Daniel Kraehmer, Jean-Claude Perrin, Julian Kaller, Aurelian Dodoc, Vladimir Kamenov, Olaf Conradi, Toralf Gruner, Thomas Okon, Alexander Epple
  • Publication number: 20180373006
    Abstract: A method of providing a catadioptric projection includes: providing a first partial objective for imaging an object field onto a first real intermediate image; providing a second partial objective for imaging the first real intermediate image onto a second real intermediate image, in which the second partial objective includes a concave mirror; providing a third partial objective for imaging the second intermediate image onto an image field, the third partial objective including an aperture stop; providing a first folding mirror and a second folding mirror; and providing an antireflection coating onto a surface of at least one lens that is directly adjacent to the concave mirror or that is separate from the concave mirror by a single lens, in which the antireflection coating is designed to have reflectivity of less than 0.2% for a wavelength between 150 nm and 250 nm and for an angle-of-incidence range between 0° and 30°.
    Type: Application
    Filed: June 28, 2018
    Publication date: December 27, 2018
    Inventors: Alexander Epple, Vladimir Kamenov, Toralf Gruner, Thomas Schicketanz
  • Patent number: 10139734
    Abstract: An imaging optical unit for imaging an object field in an image field is disclosed. The imaging optical unit has an obscured pupil. This pupil has a center, through which a chief ray of a central field point passes. The imaging optical unit furthermore has a plurality of imaging optical components. A gravity center of a contiguous pupil obscuration region of the imaging optical unit lies decentrally in the pupil of the imaging optical unit.
    Type: Grant
    Filed: October 27, 2014
    Date of Patent: November 27, 2018
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Alexander Epple, Ralf Mueller, Hans-Juergen Rostalski
  • Patent number: 10101668
    Abstract: An objective having a plurality of optical elements arranged to image a pattern from an object field to an image field at an image-side numerical aperture NA>0.8 with electromagnetic radiation from a wavelength band around a wavelength ? includes a number N of dioptric optical elements, each dioptric optical element i made from a transparent material having a normalized optical dispersion ?ni=ni(?0)?ni(?0+1 pm) for a wavelength variation of 1 pm from a wavelength ?0. The objective satisfies the relation ? ? i = 1 N ? ? ? ? n i ? ( s i - d i ) ? ? 0 ? NA 4 ? A for any ray of an axial ray bundle originating from a field point on an optical axis in the object field, where si is a geometrical path length of a ray in an ith dioptric optical element having axial thickness di and the sum extends on all dioptric optical elements of the objective. Where A=0.2 or below, spherochromatism is sufficiently corrected.
    Type: Grant
    Filed: December 31, 2012
    Date of Patent: October 16, 2018
    Assignee: CARL ZEISS SMT GMBH
    Inventors: Alexander Epple, Heiko Feldmann, Hans-Juergen Rostalski
  • Patent number: 10042146
    Abstract: A method of providing a catadioptric projection includes: providing a first partial objective for imaging an object field onto a first real intermediate image; providing a second partial objective for imaging the first real intermediate image onto a second real intermediate image, in which the second partial objective includes a concave mirror; providing a third partial objective for imaging the second intermediate image onto an image field, the third partial objective including an aperture stop; providing a first folding mirror and a second folding mirror; and providing an antireflection coating onto a surface of at least one lens that is directly adjacent to the concave mirror or that is separate from the concave mirror by a single lens, in which the antireflection coating is designed to have reflectivity of less than 0.2% for a wavelength between 150 nm and 250 nm and for an angle-of-incidence range between 0° and 30°.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: August 7, 2018
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Alexander Epple, Vladimir Kamenov, Toralf Gruner, Thomas Schicketanz
  • Publication number: 20180095258
    Abstract: A method of providing a catadioptric projection includes: providing a first partial objective for imaging an object field onto a first real intermediate image; providing a second partial objective for imaging the first real intermediate image onto a second real intermediate image, in which the second partial objective includes a concave mirror; providing a third partial objective for imaging the second intermediate image onto an image field, the third partial objective including an aperture stop; providing a first folding mirror and a second folding mirror; and providing an antireflection coating onto a surface of at least one lens that is directly adjacent to the concave mirror or that is separate from the concave mirror by a single lens, in which the antireflection coating is designed to have reflectivity of less than 0.2% for a wavelength between 150 nm and 250 nm and for an angle-of-incidence range between 0° and 30°.
    Type: Application
    Filed: July 20, 2017
    Publication date: April 5, 2018
    Inventors: Alexander Epple, Vladimir Kamenov, Toralf Gruner, Thomas Schicketanz
  • Publication number: 20180031815
    Abstract: A projection objective configured to image an object field in an object plane into an image field in an image field plane includes a reflective unit, a first refractive unit, and a second refractive unit. An optical axis of the first refractive unit is parallel to but displaced from an optical axis of the second refractive unit. The reflective unit includes a first curved mirror and a second curved mirror. The second curved mirror is immediately downstream from the first curved mirror in a path of light from the object plane to the image plane. The projection objective is a microlithography projection objective.
    Type: Application
    Filed: August 22, 2017
    Publication date: February 1, 2018
    Inventors: David Shafer, Wilhelm Ulrich, Aurelian Dodoc, Rudolf Murai Von Buenau, Hans-Juergen Mann, Alexander Epple
  • Publication number: 20170363963
    Abstract: A catadioptric projection objective has a first objective part, defining a first part of the optical axis and imaging an object field to form a first real intermediate image. It also has a second, catadioptric objective part forming a second real intermediate image using the radiation from the first objective part. The second objective part has a concave mirror and defines a second part of the optical axis. A third objective part images the second real intermediate image into the image plane and defines a third part of the optical axis. Folding mirrors deflect the radiation from the object plane towards the concave mirror; and deflect the radiation from the concave mirror towards the image plane. The first part of the optical axis defined by the first objective part is laterally offset from and aligned parallel with the third part of the optical axis.
    Type: Application
    Filed: June 30, 2017
    Publication date: December 21, 2017
    Inventors: Aurelian Dodoc, Wilhelm Ulrich, Alexander Epple
  • Patent number: 9772478
    Abstract: A projection objective configured to image an object field in an object plane into an image field in an image field plane includes a reflective unit, a first refractive unit, and a second refractive unit. An optical axis of the first refractive unit is parallel to but displaced from an optical axis of the second refractive unit. The reflective unit includes a first curved mirror and a second curved mirror. The second curved mirror is immediately downstream from the first curved mirror in a path of light from the object plane to the image plane. The projection objective is a microlithography projection objective.
    Type: Grant
    Filed: April 2, 2015
    Date of Patent: September 26, 2017
    Assignee: Carl Zeiss SMT GmbH
    Inventors: David Shafer, Wilhelm Ulrich, Aurelian Dodoc, Rudolf Murai von Buenau, Hans-Juergen Mann, Alexander Epple
  • Patent number: 9726870
    Abstract: A projection objective for microlithography for imaging an object field onto an image field includes: a first partial objective for imaging the object field onto a first real intermediate image; a second partial objective for imaging the first intermediate image onto a second real intermediate image; a third partial objective for imaging the second intermediate image onto the image field, the third partial objective including an aperture; and a first folding mirror for deflecting radiation toward a concave mirror and a second folding mirror for deflecting the radiation from the concave mirror toward the image plane; in which the projection objective is an immersion projection objective in which during operation an immersion liquid is situated between a last lens surface and an image plane, and at least one surface of at least one lens in the second partial objective has an antireflection coating including at least six layers.
    Type: Grant
    Filed: January 21, 2016
    Date of Patent: August 8, 2017
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Alexander Epple, Vladimir Kamenov, Toralf Gruner, Thomas Schicketanz
  • Patent number: 9726979
    Abstract: A catadioptric projection objective has a first objective part, defining a first part of the optical axis and imaging an object field to form a first real intermediate image. It also has a second, catadioptric objective part forming a second real intermediate image using the radiation from the first objective part. The second objective part has a concave mirror and defines a second part of the optical axis. A third objective part images the second real intermediate image into the image plane and defines a third part of the optical axis. Folding mirrors deflect the radiation from the object plane towards the concave mirror; and deflect the radiation from the concave mirror towards the image plane. The first part of the optical axis defined by the first objective part is laterally offset from and aligned parallel with the third part of the optical axis.
    Type: Grant
    Filed: March 30, 2015
    Date of Patent: August 8, 2017
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Aurelian Dodoc, Wilhelm Ulrich, Alexander Epple