Patents by Inventor Alexander Epple

Alexander Epple has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150055214
    Abstract: A catadioptric projection objective for imaging a pattern provided in an object plane of the projection objective onto an image plane of the projection objective has a first, refractive objective part for imaging the pattern provided in the object plane into a first intermediate image; a second objective part including at least one concave mirror for imaging the first Intermediate imaging into a second intermediate image; and a third, refractive objective part for imaging the second intermediate imaging onto the image plane; wherein the projection objective has a maximum lens diameter Dmax, a maximum image field height Y?, and an image side numerical aperture NA; wherein COMP1=Dmax/(Y?·NA2) and wherein the condition COMP1<10 holds.
    Type: Application
    Filed: October 31, 2014
    Publication date: February 26, 2015
    Inventors: David R. Shafer, Wilhelm Ulrich, Aurelian Dodoc, Rudolf Murai Von Buenau, Hans-Juergen Mann, Alexander Epple, Susanne Beder, Wolfgang Singer
  • Publication number: 20140376086
    Abstract: A projection objective for imaging a pattern provided in an object plane onto an image plane includes: a first objective part to image the pattern provided in the object plane to a first intermediate image, wherein all of the elements in the first objective part having optical power to image the pattern are refractive elements; a second objective part that includes at least one concave mirror to image the first intermediate image to a second intermediate image; and a third objective part to image the second intermediate image to the image plane, wherein all of the elements in the third objective part having optical power are refractive elements. An aperture stop is positioned in the third objective part and there are no more than four lenses in the third objective part between the aperture stop and the image plane. The projection objective has an image side numerical aperture >0.9.
    Type: Application
    Filed: June 27, 2014
    Publication date: December 25, 2014
    Inventors: David Shafer, Wilhelm Ulrich, Aurelian Dodoc, Rudolf Murai Von Buenau, Hans-Juergen Mann, Alexander Epple
  • Patent number: 8913316
    Abstract: A catadioptric projection objective has a first objective part, defining a first part of the optical axis and imaging an object field to form a first real intermediate image. It also has a second, catadioptric objective part forming a second real intermediate image using the radiation from the first objective part. The second objective part has a concave mirror and defines a second part of the optical axis. A third objective part images the second real intermediate image into the image plane and defines a third part of the optical axis. Folding mirrors deflect the radiation from the object plane towards the concave mirror; and deflect the radiation from the concave mirror towards the image plane. The first part of the optical axis defined by the first objective part is laterally offset from and aligned parallel with the third part of the optical axis.
    Type: Grant
    Filed: November 13, 2013
    Date of Patent: December 16, 2014
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Aurelian Dodoc, Wilhelm Ulrich, Alexander Epple
  • Patent number: 8908269
    Abstract: A catadioptric projection objective for imaging a pattern provided in an object plane of the projection objective onto an image plane of the projection objective has a first, refractive objective part for imaging the pattern provided in the object plane into a first intermediate image; a second objective part including at least one concave mirror for imaging the first Intermediate imaging into a second intermediate image; and a third, refractive objective part for imaging the second intermediate imaging onto the image plane; wherein the projection objective has a maximum lens diameter Dmax, a maximum image field height Y?, and an image side numerical aperture NA; wherein COMP1=Dmax/(Y?·NA2) and wherein the condition COMP1<10 holds.
    Type: Grant
    Filed: December 30, 2013
    Date of Patent: December 9, 2014
    Assignee: Carl Zeiss SMT GmbH
    Inventors: David R. Shafer, Wilhelm Ulrich, Aurelian Dodoc, Rudolf M. von Buenau, Hans-Juergen Mann, Alexander Epple, Susanne Beder, Wolfgang Singer
  • Publication number: 20140333913
    Abstract: Microlithography projection objectives for imaging into an image plane a pattern arranged in an object plane are described with respect to suppressing false light in such projection objectives.
    Type: Application
    Filed: July 22, 2014
    Publication date: November 13, 2014
    Inventors: Heiko Feldmann, Daniel Kraehmer, Jean-Claude Perrin, Julian Kaller, Aurelian Dodoc, Vladimir Kamenov, Olaf Conradi, Toralf Gruner, Thomas Okon, Alexander Epple
  • Patent number: 8873137
    Abstract: Catadioptric projection objective (1) for microlithography for imaging an object field (3) in an object plane (5) onto an image field (7) in an image plane (9). The objective includes a first partial objective (11) imaging the object field onto a first real intermediate image (13), a second partial objective (15) imaging the first intermediate image onto a second real intermediate image (17), and a third partial objective (19) imaging the second intermediate image onto the image field. The second partial objective is a catadioptric objective having exactly one concave mirror and having at least one lens (L21, L22). A first folding mirror (23) deflects the radiation from the object plane toward the concave mirror and a second folding mirror (25) deflects the radiation from the concave mirror toward the image plane. At least one surface of a lens (L21, L22) of the second partial objective has an antireflection coating having a reflectivity of less than 0.
    Type: Grant
    Filed: April 26, 2013
    Date of Patent: October 28, 2014
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Alexander Epple, Vladimir Kamenov, Toralf Gruner, Thomas Schicketanz
  • Publication number: 20140293256
    Abstract: Microlithography projection objectives for imaging into an image plane a pattern arranged in an object plane are described with respect to suppressing false light in such projection objectives.
    Type: Application
    Filed: June 10, 2014
    Publication date: October 2, 2014
    Inventors: Heiko Feldmann, Daniel Kraehmer, Jean-Claude Perrin, Julian Kaller, Aurelian Dodoc, Vladimir Kamenov, Olaf Conradi, Toralf Gruner, Thomas Okon, Alexander Epple
  • Patent number: 8804234
    Abstract: A catadioptric projection objective for imaging a pattern onto an image plane includes: a first objective part for imaging the pattern into a first intermediate image; a second objective part for imaging the first intermediate image into a second intermediate image; and a third objective part for imaging the second intermediate image onto the image plane. A first concave mirror having a continuous mirror surface and a second concave mirror having a continuous mirror surface are upstream of the second intermediate image. A pupil surface is formed between the object plane and the first intermediate image, between the first and the second intermediate image, and between the second intermediate image and the image plane. A plate having essentially parallel plate surfaces is positioned in the first objective part near the pupil surface. At least one plate surface is aspherized to correct for aberrations.
    Type: Grant
    Filed: June 13, 2012
    Date of Patent: August 12, 2014
    Assignee: Carl Zeiss SMT GmbH
    Inventors: David Shafer, Wilhelm Ulrich, Aurelian Dodoc, Rudolf M. Von Buenau, Hans-Juergen Mann, Alexander Epple
  • Patent number: 8730572
    Abstract: A catadioptric projection objective for imaging a pattern provided in an object plane of the projection objective onto an image plane of the projection objective has a first, refractive objective part for imaging the pattern provided in the object plane into a first intermediate image; a second objective part including at least one concave mirror for imaging the first intermediate imaging into a second intermediate image; and a third, refractive objective part for imaging the second intermediate imaging onto the image plane; wherein the projection objective has a maximum lens diameter Dmax, a maximum image field height Y?, and an image side numerical aperture NA; wherein COMP1=Dmax/(Y?·NA2) and wherein the condition COMP1<10 holds.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: May 20, 2014
    Assignee: Carl Zeiss SMT GmbH
    Inventors: David Shafer, Wilhelm Ulrich, Aurelian Dodoc, Rudolf M. Von Buenau, Hans-Juergen Mann, Alexander Epple, Susanne Beder, Wolfgang Singer
  • Publication number: 20140118713
    Abstract: A catadioptric projection objective has a first objective part, defining a first part of the optical axis and imaging an object field to form a first real intermediate image. It also has a second, catadioptric objective part forming a second real intermediate image using the radiation from the first objective part. The second objective part has a concave mirror and defines a second part of the optical axis. A third objective part images the second real intermediate image into the image plane and defines a third part of the optical axis. Folding mirrors deflect the radiation from the object plane towards the concave mirror; and deflect the radiation from the concave mirror towards the image plane. The first part of the optical axis defined by the first objective part is laterally offset from and aligned parallel with the third part of the optical axis.
    Type: Application
    Filed: December 30, 2013
    Publication date: May 1, 2014
    Inventors: Aurelian Dodoc, Wilhelm Ulrich, Alexander Epple
  • Publication number: 20140111787
    Abstract: A catadioptric projection objective for imaging a pattern provided in an object plane of the projection objective onto an image plane of the projection objective has a first, refractive objective part for imaging the pattern provided in the object plane into a first intermediate image; a second objective part including at least one concave mirror for imaging the first Intermediate imaging into a second intermediate image; and a third, refractive objective part for imaging the second intermediate imaging onto the image plane; wherein the projection objective has a maximum lens diameter Dmax, a maximum image field height Y?, and an image side numerical aperture NA; wherein COMP1=Dmax/(Y?·NA2) and wherein the condition COMP1<10 holds.
    Type: Application
    Filed: December 30, 2013
    Publication date: April 24, 2014
    Inventors: David R. Shafer, Wilhelm Ulrich, Aurelian Dodoc, Rudolf M. von Buenau, Hans-Juergen Mann, Alexander Epple, Susanne Beder, Wolfgang Singer
  • Publication number: 20140111786
    Abstract: A catadioptric projection objective has a first objective part, defining a first part of the optical axis and imaging an object field to form a first real intermediate image. It also has a second, catadioptric objective part forming a second real intermediate image using the radiation from the first objective part. The second objective part has a concave mirror and defines a second part of the optical axis. A third objective part images the second real intermediate image into the image plane and defines a third part of the optical axis. Folding mirrors deflect the radiation from the object plane towards the concave mirror; and deflect the radiation from the concave mirror towards the image plane. The first part of the optical axis defined by the first objective part is laterally offset from and aligned parallel with the third part of the optical axis.
    Type: Application
    Filed: December 30, 2013
    Publication date: April 24, 2014
    Inventors: Aurelian Dodoc, Wilhelm Ulrich, Alexander Epple
  • Publication number: 20140078483
    Abstract: A catadioptric projection objective has a first objective part, defining a first part of the optical axis and imaging an object field to form a first real intermediate image. It also has a second, catadioptric objective part forming a second real intermediate image using the radiation from the first objective part. The second objective part has a concave mirror and defines a second part of the optical axis. A third objective part images the second real intermediate image into the image plane and defines a third part of the optical axis. Folding mirrors deflect the radiation from the object plane towards the concave mirror; and deflect the radiation from the concave mirror towards the image plane. The first part of the optical axis defined by the first objective part is laterally offset from and aligned parallel with the third part of the optical axis.
    Type: Application
    Filed: November 13, 2013
    Publication date: March 20, 2014
    Inventors: Aurelian Dodoc, Wilhelm Ulrich, Alexander Epple
  • Publication number: 20130242279
    Abstract: Catadioptric projection objective (1) for microlithography for imaging an object field (3) in an object plane (5) onto an image field (7) in an image plane (9). The objective includes a first partial objective (11) imaging the object field onto a first real intermediate image (13), a second partial objective (15) imaging the first intermediate image onto a second real intermediate image (17), and a third partial objective (19) imaging the second intermediate image onto the image field. The second partial objective is a catadioptric objective having exactly one concave mirror and having at least one lens (L21, L22). A first folding mirror (23) deflects the radiation from the object plane toward the concave mirror and a second folding mirror (25) deflects the radiation from the concave mirror toward the image plane. At least one surface of a lens (L21, L22) of the second partial objective has an antireflection coating having a reflectivity of less than 0.
    Type: Application
    Filed: April 26, 2013
    Publication date: September 19, 2013
    Applicant: CARL ZEISS SMT GmbH
    Inventors: Alexander EPPLE, Vladimir KAMENOV, Toralf GRUNER, Thomas SCHICKETANZ
  • Patent number: 8446665
    Abstract: Catadioptric projection objective (1) for microlithography for imaging an object field (3) in an object plane (5) onto an image field (7) in an image plane (9). The objective includes a first partial objective (11) imaging the object field onto a first real intermediate image (13), a second partial objective (15) imaging the first intermediate image onto a second real intermediate image (17), and a third partial objective (19) imaging the second intermediate image onto the image field. The second partial objective is a catadioptric objective having exactly one concave mirror and having at least one lens (L21, L22). A first folding mirror (23) deflects the radiation from the object plane toward the concave mirror and a second folding mirror (25) deflects the radiation from the concave mirror toward the image plane. At least one surface of a lens (L21, L22) of the second partial objective has an antireflection coating having a reflectivity of less than 0.
    Type: Grant
    Filed: September 18, 2009
    Date of Patent: May 21, 2013
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Alexander Epple, Vladimir Kamenov, Toralf Gruner, Thomas Schicketanz
  • Patent number: 8416490
    Abstract: A catadioptric projection objective for imaging a pattern provided in an object plane of the projection objective onto an image plane of the projection objective has a first, refractive objective part for imaging the pattern provided in the object plane into a first intermediate image; a second objective part including at least one concave mirror for imaging the first intermediate imaging into a second intermediate image; and a third, refractive objective part for imaging the second intermediate imaging onto the image plane; wherein the projection objective has a maximum lens diameter Dmax, a maximum image field height Y?, and an image side numerical aperture NA; wherein COMP1=Dmax/(Y?·NA2) and wherein the condition COMP1<10 holds.
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: April 9, 2013
    Assignee: Carl Zeiss SMT GmbH
    Inventors: David Shafer, Wilhelm Ulrich, Aurelian Dodoc, Rudolf Von Buenau, Hans-Juergen Mann, Alexander Epple, Susanne Beder, Wolfgang Singer
  • Patent number: 8390784
    Abstract: In certain aspects, catadioptric projection objectives for imaging a pattern from an object field arranged in an object surface of the projection objective onto an image field arranged in an image surface of the projection objective include a first objective part configured to image the pattern from the object surface into a first intermediate image, and having a first pupil surface, a second objective part configured to image the first intermediate image into a second intermediate image, and having a second pupil surface optically conjugate to the first pupil surface, and a third objective part configured to image the second intermediate image into the image surface, and having a third pupil surface optically conjugate to the first and second pupil surface. A pupil mirror having a reflective pupil mirror surface is positioned at or close to one of the first, second and third pupil surface.
    Type: Grant
    Filed: February 11, 2009
    Date of Patent: March 5, 2013
    Assignee: Carl Zeiss SMT GmbH
    Inventor: Alexander Epple
  • Patent number: 8363315
    Abstract: A catadioptric projection objective for imaging an off-axis object field arranged in an object surface of the projection objective onto an off-axis image field arranged in an image surface of the projection objective has a front lens group, a mirror group comprising four mirrors and having an object side mirror group entry, an image side mirror group exit, and a mirror group plane aligned transversely to the optical axis and arranged geometrically between the mirror group entry and the mirror group exit; and a rear lens group. The mirrors of the mirror group are arranged such that at least one intermediate image is positioned inside the mirror group between mirror group entry and mirror group exit, and that radiation coming from the mirror group entry passes at least four times through the mirror group plane and is reflected at least twice on a concave mirror surface of the mirror group prior to exiting the mirror group at the mirror group exit.
    Type: Grant
    Filed: April 7, 2005
    Date of Patent: January 29, 2013
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Alexander Epple, Wilhelm Ulrich, Aurelian Dodoc, Hans-Juergen Mann, David Shafer
  • Patent number: 8355201
    Abstract: A catadioptric projection objective for imaging a pattern provided in an object plane of the projection objective onto an image plane of the projection objective has a first, refractive objective part for imaging the pattern provided in the object plane into a first intermediate image; a second objective part including at least one concave mirror for imaging the first intermediate imaging into a second intermediate image; and a third, refractive objective part for imaging the second intermediate imaging onto the image plane; wherein the projection objective has a maximum lens diameter Dmax, a maximum image field height Y?, and an image side numerical aperture NA; wherein COMP1=Dmax/(Y?·NA2) and wherein the condition COMP1<10 holds.
    Type: Grant
    Filed: April 6, 2011
    Date of Patent: January 15, 2013
    Assignee: Carl Zeiss SMT GmbH
    Inventors: David Shafer, Wilhelm Ulrich, Aurelian Dodoc, Rudolf M. Von Buenau, Hans-Juergen Mann, Alexander Epple, Susanne Beder, Wolfgang Singer
  • Patent number: 8345350
    Abstract: An objective having a plurality of optical elements arranged to image a pattern from an object field to an image field at an image-side numerical aperture NA>0.8 with electromagnetic radiation from a wavelength band around a wavelength ? includes a number N of dioptric optical elements, each dioptric optical element i made from a transparent material having a normalized optical dispersion ?ni=ni(?0)?ni(?0+1 pm) for a wavelength variation of 1 pm from a wavelength ?0. The objective satisfies the relation ? ? i = 1 N ? ? ? ? n i ? ( s i - d i ) ? ? 0 ? NA 4 ? A for any ray of an axial ray bundle originating from a field point on an optical axis in the object field, where si is a geometrical path length of a ray in an ith dioptric optical element having axial thickness di and the sum extends on all dioptric optical elements of the objective. Where A=0.2 or below, spherochromatism is sufficiently corrected.
    Type: Grant
    Filed: November 18, 2009
    Date of Patent: January 1, 2013
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Alexander Epple, Heiko Feldmann, Hans-Juergen Rostalski