Patents by Inventor Alexander I. Kalina

Alexander I. Kalina has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10054011
    Abstract: Systems and methods based on the systems to convert a portion of thermal energy into to mechanical and/or electrical energy including a power generation subsystem (PGSS) comprising a vaporization and power generation subsystem (VPSS) including a heat recovery vapor generator (HRVG) and a turbine T1, a heating and cooling subsystem (HCSS) including three parallel configured heat exchange units HE3, HE4, and HE5, a single heat exchange unit HE2, and a first separator SP1, and a condensing subsystem (CSS) including a final condenser HE1b from a heat source subsystem (HSSS) including a heat source producing an initial heat source stream.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: August 21, 2018
    Inventor: Alexander I. Kalina
  • Publication number: 20170191382
    Abstract: Power systems and methods including a vaporization subsystem (VPSS), an energy conversion subsystem (ECSS), and a distillation condensation subsystem (DCSS), where the DCSS produces a fully condensed, lean working solution stream (LWSS) and a fully condensed, rich working solution stream (RWSS) from a multiple component working fluid using an external coolant stream, the VPSS vaporizes and superheats the LWSS and RWSS in a multi-stage vaporization process such that each LWSS remains in a state of subcooled liquid prior to being mixed with the RWSS or one or more intermediate solution streams to maximize heat extraction from an external heat source stream to form a combined working solution stream (CWSS) and converting a portion of the heat in the CWSS into a useable from of energy in the ECSS.
    Type: Application
    Filed: January 5, 2016
    Publication date: July 6, 2017
    Inventor: Alexander I. Kalina
  • Publication number: 20170152764
    Abstract: Systems and methods based on the systems to convert a portion of thermal energy into to mechanical and/or electrical energy including a power generation subsystem (PGSS) comprising a vaporization and power generation subsystem (VPSS) including a heat recovery vapor generator (HRVG) and a turbine T1, a heating and cooling subsystem (HCSS) including three parallel configured heat exchange units HE3, HE4, and HE5, a single heat exchange unit HE2, and a first separator SP1, and a condensing subsystem (CSS) including a final condenser HE1b from a heat source subsystem (HSSS) including a heat source producing an initial heat source stream.
    Type: Application
    Filed: November 30, 2015
    Publication date: June 1, 2017
    Inventor: Alexander I. Kalina
  • Patent number: 9638175
    Abstract: Power systems utilizing at least two heat source streams with substantially different initial temperatures, where the systems include a simple vaporization, separation, and energy extraction subsystem, a recycle subsystem, and a condensation and pressurization subsystem and methods for making and using same.
    Type: Grant
    Filed: October 18, 2012
    Date of Patent: May 2, 2017
    Inventor: Alexander I. Kalina
  • Patent number: 9556793
    Abstract: Systems and methods for implementing the systems includes aeroderivative gas turbine subsystem and an energy extraction subsystem extracting energy from an exhaust of the aeroderivative gas turbine subsystem, where the energy extraction subsystem includes a heat exchange subsystem, a dual pressure turbine subsystem, and a condensation-thermal compression subsystem and where an intercooler portion of the heat recovery and vapor generator subsystem permits a working fluid flow rate to be increased to relative to a flow of the exhaust stream resulting in a bottoming cycle gross output increase of at least 23% relative a dual pressure Rankine cycle bottoming cycle, a bottoming cycle net output increase of at least 25% relative a dual pressure Rankine cycle bottoming cycle, a combined cycle net output increase of at least 5.5% relative a dual pressure Rankine cycle bottoming cycle, and a combined cycle efficiency increase to at least 54% relative to 51.1% for a dual pressure Rankine cycle bottoming cycle.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: January 31, 2017
    Assignee: KALEX SYSTEMS LLC
    Inventor: Alexander I. Kalina
  • Publication number: 20150107250
    Abstract: An optimized Rankine thermodynamic cycle system and method include utilizing a working fluid including a base component and an effective amount of a lower boiling point component, where the effective amount is sufficient to raise a power utilization efficiency of the systems by up to 10%, without changing a weight of the fluid reducing turbine efficiency for the particular base component and for optimizing output control valves for adjusting the working fluid composition and temperature sensors measuring an initial temperature of a coolant medium and a final temperature of a heat source stream to computer control valves to continuously adjust a pressure and a flow rate of a working fluid stream to be vaporized so that a heat utilization of the system is about 99% increasing output by approximately 3% to 6% on a sustained and permanent yearly basis.
    Type: Application
    Filed: December 31, 2014
    Publication date: April 23, 2015
    Inventor: Alexander I. Kalina
  • Patent number: 8925320
    Abstract: An optimized Rankine thermodynamic cycle system and method include utilizing a working fluid including a base component and an effective amount of a lower boiling point component, where the effective amount is sufficient to raise a power utilization efficiency of the systems by up to 10%, without changing a weight of the fluid reducing turbine efficiency for the particular base component and for optimizing output control valves for adjusting the working fluid composition and temperature sensors measuring an initial temperature of a coolant medium and a final temperature of a heat source stream to computer control valves to continuously adjust a pressure and a flow rate of a working fluid stream to be vaporized so that a heat utilization of the system is about 99% increasing output by approximately 3% to 6% on a sustained and permanent yearly basis.
    Type: Grant
    Filed: September 10, 2013
    Date of Patent: January 6, 2015
    Inventor: Alexander I. Kalina
  • Patent number: 8833077
    Abstract: Methods and systems for implementing a thermodynamic cycle using heat source streams having initial temperatures between about 200° F. and about 500° F. and coolant stream having relatively high temperatures greater than or equal to about 80° F., where the methods and systems have overall energy extraction efficiencies that are at least 40% higher than a corresponding Rankine cycle.
    Type: Grant
    Filed: May 18, 2012
    Date of Patent: September 16, 2014
    Assignee: KALEX, LLC
    Inventor: Alexander I. Kalina
  • Patent number: 8763398
    Abstract: A optimized organic thermodynamic cycle system and method include temperature sensors measuring an initial temperature of a coolant medium and a final temperature of a heat source stream to computer control valves to continuously adjust a pressure and a flow rate of a working fluid stream to be vaporized so that a heat utilization of the system is about 99% increasing output by approximately 3% to 6% on a sustained and permanent yearly basis.
    Type: Grant
    Filed: August 7, 2013
    Date of Patent: July 1, 2014
    Assignee: Kalex, LLC
    Inventor: Alexander I. Kalina
  • Publication number: 20140109573
    Abstract: A power systems utilizing at least two heat source streams with substantially different initial temperatures, where the systems include a simple vaporization, separation, and energy extraction subsystem, a recycle subsystem, and a condensation and pressurization subsystem and methods for making and using same.
    Type: Application
    Filed: October 18, 2012
    Publication date: April 24, 2014
    Applicant: KALEX, LLC
    Inventor: Alexander I. Kalina
  • Patent number: 8695344
    Abstract: The present invention discloses systems and methods for converting heat from external heat source streams or from solar energy derived from a solar collector subsystem. The systems and methods comprise a thermodynamic cycle including three internal subcycles. Two of the subcycles combine to power a higher pressures turbine and third or main cycle powers a lower pressure turbine. One of the cycles increases the flow rate of a richer working solution stream powering the lower pressure turbine. Another one of the cycles is a leaner working solution cycle, which provides increased flow rate for leaner working solution stream going into the higher pressure turbine.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: April 15, 2014
    Assignee: Kalex, LLC
    Inventor: Alexander I. Kalina
  • Patent number: 8613196
    Abstract: A new method, system and apparatus for power system utilizing flue gas streams and a multi-component working fluid is disclosed including a heat recovery vapor generator (HRVG) subsystem, a multi-stage energy conversion or turbine subsystem and a condensation thermal compression subsystem (CTCSS), where the CTCSS receives a single stream from the turbine subsystem and produces at least one fully condensed stream.
    Type: Grant
    Filed: October 21, 2010
    Date of Patent: December 24, 2013
    Assignee: Kalex, LLC
    Inventor: Alexander I. Kalina
  • Publication number: 20130305721
    Abstract: Methods and systems for implementing a thermodynamic cycle using heat source streams having initial temperatures between about 200° F. and about 500° F. and coolant stream having relatively high temperatures greater than or equal to about 80° F., where the methods and systems have overall energy extraction efficiencies that are at least 40% higher than a corresponding Rankine cycle.
    Type: Application
    Filed: May 18, 2012
    Publication date: November 21, 2013
    Applicant: KALEX, LLC
    Inventor: Alexander I. Kalina
  • Patent number: 8584462
    Abstract: Ocean Thermal Energy Conversion (OTEC) systems and methods utilizing the systems are disclosed for producing a useable form of energy utilizing warm surface seawater and cold seawater from depths up to 2 miles below the surface and utilizing a multi-component working fluid. The systems and methods are designed to maximize energy conversion per unit of cold seawater, the limited resource, achieving relative net outputs compared to a Rankine cycle using a single component fluid by at least 20% and even as high as about 55%.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: November 19, 2013
    Assignee: KALEX, LLC
    Inventor: Alexander I. Kalina
  • Patent number: 8561406
    Abstract: Ocean Thermal Energy Conversion (OTEC) systems and methods utilizing the systems are disclosed for producing a useable form of energy utilizing warm surface seawater and cold seawater from depths up to 2 miles below the surface and utilizing a multi-component working fluid. The systems and methods are designed to maximize energy conversion per unit of cold seawater, the limited resource, achieving relative net outputs compared to a Rankine cycle using a single component fluid by at least 20% and even as high as about 55%.
    Type: Grant
    Filed: August 19, 2011
    Date of Patent: October 22, 2013
    Assignee: Kalex, LLC
    Inventor: Alexander I. Kalina
  • Patent number: 8555643
    Abstract: Simple thermodynamic cycles, methods and apparatus for implementing the cycles are disclosed, where the method and system involve once or twice enriching an upcoming basic solution stream, where the systems and methods utilize relatively low temperature external heat source streams, especially low temperature geothermal sources.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: October 15, 2013
    Assignee: Kalex LLC
    Inventor: Alexander I. Kalina
  • Patent number: 8534070
    Abstract: Embodiments of the present invention disclose systems and methods for the efficient conversion of solar energy into a useable form of energy using a solar collector subsystem and a heat conversion subsystem. The systems and methods transfer solar energy directly to an intermediate solution and a working solution and indirectly to and between a basic rich solution, a condensing solution, a lean solution and a rich vapor solution. The systems and methods also include condensing the basic rich solution using an external coolant. The systems and methods support a closed thermodynamic cycle.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: September 17, 2013
    Assignee: Kalex, LLC
    Inventor: Alexander I. Kalina
  • Patent number: 8474263
    Abstract: A system and method are disclosed for converting heat into a usable form of energy, where the system and method are designed to utilize at least two separate heat sources simultaneously, where one heat source stream has a higher initial temperature and a second heat source stream has a lower initial temperature, which is transferred to and a multi-component working fluid from which thermal energy is extracted.
    Type: Grant
    Filed: April 21, 2010
    Date of Patent: July 2, 2013
    Assignee: Kalex, LLC
    Inventor: Alexander I. Kalina
  • Patent number: 8464532
    Abstract: Power generation systems and methods are disclosed for use with medium to high temperature heat source stream, gaseous or liquid, where the systems and methods permit efficient energy extraction for medium and small scale power plants.
    Type: Grant
    Filed: December 3, 2009
    Date of Patent: June 18, 2013
    Assignee: Kalex, LLC
    Inventor: Alexander I. Kalina
  • Patent number: 8459031
    Abstract: A system and method are disclosed for the combined production of power and heat from an external heat source stream, where the system utilizes four basic stream of different compositions to co-generate power and to heat an external heat absorber stream from an external heat source stream.
    Type: Grant
    Filed: September 18, 2009
    Date of Patent: June 11, 2013
    Assignee: Kalex, LLC
    Inventor: Alexander I. Kalina