Patents by Inventor Alexander Nickel
Alexander Nickel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12186212Abstract: Technology is described to provide a foot and ankle prosthesis for individuals with lower limb loss. This technology is able to store and release energy and individuals or patients who are using the foot/ankle prosthesis may be able to expend less energy when walking. The system includes a hydraulic damper attached to dynamic energy storing spring elements. The axis of rotation of the system can be near to that of an intact human ankle, providing biomimetic function. The system can utilize spring elements based on the vertical displacement of the center of pressure of an intact normal foot. A hydraulic system can provide user adjustable heel height and adaptation to inclines. The dorsiflexion and plantar flexion resistances can be independently adjusted manually or electrically. In addition, the system can be automatically locked in dorsiflexion when loaded and unlock when unloaded.Type: GrantFiled: October 21, 2021Date of Patent: January 7, 2025Assignees: Motion Control, The United States Government As Represented by the Department Of Veterans AffairsInventors: Andrew Howard Hansen, Edwin Kay Iversen, Eric Alexander Nickel, Gregory O. Voss, Gregory James Jacobs, Carter J. Greene, Jeffery David Christenson
-
Publication number: 20230126674Abstract: Technology is described to provide a foot and ankle prosthesis for individuals with lower limb loss. This technology is able to store and release energy and individuals or patients who are using the foot/ankle prosthesis may be able to expend less energy when walking. The system includes a hydraulic damper attached to dynamic energy storing spring elements. The axis of rotation of the system can be near to that of an intact human ankle, providing biomimetic function. The system can utilize spring elements based on the vertical displacement of the center of pressure of an intact normal foot. A hydraulic system can provide user adjustable heel height and adaptation to inclines. The dorsiflexion and plantar flexion resistances can be independently adjusted manually or electrically. In addition, the system can be automatically locked in dorsiflexion when loaded and unlock when unloaded.Type: ApplicationFiled: October 21, 2021Publication date: April 27, 2023Inventors: Andrew Howard Hansen, Edwin Kay Iversen, Eric Alexander Nickel, Gregory O. Voss, Gregory James Jacobs, Carter J. Greene, Jeffery David Christenson
-
Patent number: 10490719Abstract: Light emitting die (300) comprising a plurality of light emitting elements (310A, 310B), each having a pair of bond pads (N1,P1 and N2,P2), wherein at least two diagonally opposite bond pads of adjacent light emitting elements on a die have their facing corners truncated (330) to enable a direct diagonal coupling of a complementary pair of diagonally opposite bond pads when the die is monted on a substrate on which an interconnection pattern is formed. By enabling diagonal as well as lateral coupling of the bond pads of multiple light emitting elements of a die, the multiple light emitting elements may be arranged in a variety of series and/or parallel configurations, thereby facilitating the use of the same die at different nominal operating voltages with a single interconnect layer on the substrate upon which the die is mounted.Type: GrantFiled: October 19, 2016Date of Patent: November 26, 2019Assignee: Lumileds Holding B.V.Inventors: Wen Yu, Oleg B. Shchekin, Franklin Wall, Kuochou Tai, Mohiuddin Mala, Robert Zona, Jeffrey Kmetec, Alexander Nickel
-
Publication number: 20180337315Abstract: Light emitting die (300) comprising a plurality of light emitting elements (310A, 310B), each having a pair of bond pads (N1,P1 and N2,P2), wherein at least two diagonally opposite bond pads of adjacent light emitting elements on a die have their facing corners truncated (330) to enable a direct diagonal coupling of a complementary pair of diagonally opposite bond pads when the die is monted on a substrate on which an interconnection pattern is formed. By enabling diagonal as well as lateral coupling of the bond pads of multiple light emitting elements of a die, the multiple light emitting elements may be arranged in a variety of series and/or parallel configurations, thereby facilitating the use of the same die at different nominal operating voltages with a single inter-connect layer on the substrate upon which the die is mounted.Type: ApplicationFiled: October 19, 2016Publication date: November 22, 2018Applicant: Lumileds Holding B.V.Inventors: Wen YU, Oleg B. SHCHEKIN, Franklin WALL, Kuochou TAI, Mohiuddin MALA, Robert ZONA, Jeffrey KMETEC, Alexander NICKEL
-
Patent number: 8415256Abstract: During semiconductor fabrication homogeneous gap-filling is achieved by depositing a thin dielectric layer into the gap, post deposition curing, and then repeating deposition and post deposition curing until gap-filling is completed. Embodiments include depositing a layer of low deposition temperature gap-fill dielectric into a high aspect ratio opening, such as a shallow trench or a gap between closely spaced apart gate electrode structures, as at a thickness of about 10 ? to about 500 ?, curing after deposition, as by UV radiation or by heating at a temperature of about 400° C. to about 1000° C., depositing another layer of low deposition temperature gap-filled dielectric, and curing after deposition. Embodiments include separately depositing and separately curing multiple layers.Type: GrantFiled: December 30, 2010Date of Patent: April 9, 2013Inventors: Alexander Nickel, Lu You, Hirokazu Tokuno, Minh Tran, Minh Van Ngo, Hieu Pham, Erik Wilson, Robert Huertas
-
Patent number: 8384146Abstract: Methods for fabricating a semiconductor memory cell that has a spacer layer are disclosed. A method includes forming a plurality of source/drain regions in a substrate where the plurality of source/drain regions are formed between trenches, forming a first oxide layer above the plurality of source/drain regions and in the trenches, forming a charge storage layer above the oxide layer and separating the charge storage layer in the trenches where a space is formed between separated portions of the charge storage layer. The method further includes forming a spacer layer to fill the space between the separated portions of the charge storage layer and to rise a predetermined distance above the space. A second oxide layer is formed above the charge storage layer and the spacer layer and a polysilicon layer is formed above the second oxide layer.Type: GrantFiled: March 23, 2012Date of Patent: February 26, 2013Assignee: Spansion LLCInventors: Shenqing Fang, Angela Hui, Gang Xue, Alexander Nickel, Kashmir Sahota, Scott Bell, Chun Chen, Wai Lo
-
Patent number: 8309455Abstract: Prior to deposition of a silicon nitride (SiN) layer on a structure, a non-plasma enhanced operation is undertaken wherein the structure is exposed to silane (SiH4) flow, reducing the overall exposure of the structure to hydrogen radicals. This results in the silicon nitride being strongly bonded to the structure and in improved performance.Type: GrantFiled: June 21, 2011Date of Patent: November 13, 2012Assignee: Spansion LLCInventors: Sung Jin Kim, Alexander Nickel, Minh-Van Ngo, Hieu Trung Pham, Masato Tsuboi, Shinich Imada
-
Publication number: 20120181601Abstract: Methods for fabricating a semiconductor memory cell that has a spacer layer are disclosed. A method includes forming a plurality of source/drain regions in a substrate where the plurality of source/drain regions are formed between trenches, forming a first oxide layer above the plurality of source/drain regions and in the trenches, forming a charge storage layer above the oxide layer and separating the charge storage layer in the trenches where a space is formed between separated portions of the charge storage layer. The method further includes forming a spacer layer to fill the space between the separated portions of the charge storage layer and to rise a predetermined distance above the space. A second oxide layer is formed above the charge storage layer and the spacer layer and a polysilicon layer is formed above the second oxide layer.Type: ApplicationFiled: March 23, 2012Publication date: July 19, 2012Inventors: Shenqing FANG, Angela HUI, Gang XUE, Alexander NICKEL, Kashmir SAHOTA, Scott BELL, Chun CHEN, Wai LO
-
Patent number: 8202779Abstract: Methods for fabricating a semiconductor memory cell that has a spacer layer are disclosed. A method includes forming a plurality of source/drain regions in a substrate where the plurality of source/drain regions are formed between trenches, forming a first oxide layer above the plurality of source/drain regions and in the trenches, forming a charge storage layer above the oxide layer and separating the charge storage layer in the trenches where a space is formed between separated portions of the charge storage layer. The method further includes forming a spacer layer to fill the space between the separated portions of the charge storage layer and to rise a predetermined distance above the space. A second oxide layer is formed above the charge storage layer and the spacer layer and a polysilicon layer is formed above the second oxide layer.Type: GrantFiled: September 27, 2010Date of Patent: June 19, 2012Assignee: Spansion LLCInventors: Shenqing Fang, Angela Hui, Gang Xue, Alexander Nickel, Kashmir Sahota, Scott Bell, Chun Chen, Wai Lo
-
Publication number: 20110266609Abstract: Prior to deposition of a silicon nitride (SiN) layer on a structure, a non-plasma enhanced operation is undertaken wherein the structure is exposed to silane (SiH4) flow, reducing the overall exposure of the structure to hydrogen radicals. This results in the silicon nitride being strongly bonded to the structure and in improved performance.Type: ApplicationFiled: June 21, 2011Publication date: November 3, 2011Inventors: Sung Jin KIM, Alexander NICKEL, Minh-Van NGO, Hieu Trung PHAM, Masato TSUBOI, Sinich IMADA
-
Patent number: 8035153Abstract: A method for fabricating a memory device with a self-aligned trap layer which is optimized for scaling is disclosed. In the present invention, a non-conformal film is deposited over the charge trapping layer to form a thick film on top of the core source/drain region and a pinch off and a void or a narrow channel at the top of the STI trench. An etch is performed on the non-conformal film to open pinch-off or widen the narrow channel in the non-conformal. The trapping layer is then completely or partially etched between the core cells. The non-conformal film is removed. And a top oxide is formed. The top oxide converts the remaining trap layer to oxide if the trapping layer is partially etched and thus isolate the trap layer.Type: GrantFiled: May 26, 2010Date of Patent: October 11, 2011Assignee: Spansion LLCInventors: Shenqing Fang, Jihwan Choi, Calvin Gabriel, Fei Wang, Angela Hui, Alexander Nickel, Zubin Patel, Phillip Jones, Mark Chang, Minh-Van Ngo
-
Publication number: 20110233647Abstract: Methods for fabricating a semiconductor memory cell that has a spacer layer are disclosed. A method includes forming a plurality of source/drain regions in a substrate where the plurality of source/drain regions are formed between trenches, forming a first oxide layer above the plurality of source/drain regions and in the trenches, forming a charge storage layer above the oxide layer and separating the charge storage layer in the trenches where a space is formed between separated portions of the charge storage layer. The method further includes forming a spacer layer to fill the space between the separated portions of the charge storage layer and to rise a predetermined distance above the space. A second oxide layer is formed above the charge storage layer and the spacer layer and a polysilicon layer is formed above the second oxide layer.Type: ApplicationFiled: September 27, 2010Publication date: September 29, 2011Inventors: Shenqing FANG, Angela HUI, Gang XUE, Alexander NICKEL, Kashmir SAHOTA, Scott BELL, Chun CHEN, Wai LO
-
Patent number: 8026169Abstract: Data retention in flash memory devices, such as mirrorbit devices, is improved by reducing the generation and/or diffusion of hydrogen ions during back end processing, such as annealing inlaid Cu. Embodiments include annealing inlaid Cu in an N2 atmosphere containing low H2 or no H2, and at temperatures less than 200° C., e.g., 100° C. to 150° C.Type: GrantFiled: November 6, 2006Date of Patent: September 27, 2011Assignee: Advanced Micro Devices, Inc.Inventors: Lu You, Alexander Nickel, Minh Q. Tran, Minh-Van Ngo, Hieu Pham, Erik Wilson, Hirokazu Tokuno, Amir Hossein Jafarpour, Inkuk Kang, Robert Huertas
-
Patent number: 8017870Abstract: A fastening device for a line, in particular for an electric cable (12) in a motor vehicle, is proposed, the fastening device having a bush (10) which can be locked in a holder (18), at least partially surrounds the line, is made of elastically deformable material and is fastened releaseably in a cutout (16) of the holder (18) by means of a contour (14). According to the invention, the surface of a bush (10), which is injection-moulded from plastic, is of segmented design in order to obtain easier deformability of the bush when fitting it into an associated holder (18).Type: GrantFiled: July 13, 2007Date of Patent: September 13, 2011Assignee: Robert Bosch GmbHInventors: Keiji Kawakami, Alexander Nickel
-
Patent number: 7985674Abstract: Prior to deposition of a silicon nitride (SiN) layer on a structure, a non-plasma enhanced operation is undertaken wherein the structure is exposed to silane (SiH4) flow, reducing the overall exposure of the structure to hydrogen radicals. This results in the silicon nitride being strongly bonded to the structure and in improved performance.Type: GrantFiled: November 5, 2008Date of Patent: July 26, 2011Assignee: Spansion LLCInventors: Sung Jin Kim, Alexander Nickel, Minh-Van Ngo, Hieu Trung Pham, Masato Tsuboi, Shinich Imada
-
Patent number: 7884030Abstract: During semiconductor fabrication homogeneous gap-filling is achieved by depositing a thin dielectric layer into the gap, post deposition curing, and then repeating deposition and post deposition curing until gap-filling is completed. Embodiments include depositing a layer of low deposition temperature gap-fill dielectric into a high aspect ratio opening, such as a shallow trench or a gap between closely spaced apart gate electrode structures, as at a thickness of about 10 ? to about 500 ?, curing after deposition, as by UV radiation or by heating at a temperature of about 400° C. to about 1000° C., depositing another layer of low deposition temperature gap-filled dielectric, and curing after deposition. Embodiments include separately depositing and separately curing multiple layers.Type: GrantFiled: April 21, 2006Date of Patent: February 8, 2011Assignee: Advanced Micro Devices, Inc. and Spansion LLCInventors: Alexander Nickel, Lu You, Hirokazu Tokuno, Minh Tran, Minh Van Ngo, Hieu Pham, Erik Wilson, Robert Huertas
-
Publication number: 20100230743Abstract: A method for fabricating a memory device with a self-aligned trap layer which is optimized for scaling is disclosed. In the present invention, a non-conformal film is deposited over the charge trapping layer to form a thick film on top of the core source/drain region and a pinch off and a void or a narrow channel at the top of the STI trench. An etch is performed on the non-conformal film to open pinch-off or widen the narrow channel in the non-conformal. The trapping layer is then completely or partially etched between the core cells. The non-conformal film is removed. And a top oxide is formed. The top oxide converts the remaining trap layer to oxide if the trapping layer is partially etched and thus isolate the trap layer.Type: ApplicationFiled: May 26, 2010Publication date: September 16, 2010Inventors: Shenqing Fang, Jihwan Choi, Calvin Gabriel, Fei Wang, Angela Hui, Alexander Nickel, Zubin Patel, Phillip Jones, Mark Chang, Minh-Van Ngo
-
Patent number: 7776682Abstract: Disclosed are methods and systems for improving cell-to-cell repeatability of electrical performance in memory cells. The methods involve forming an electrically non-conducting material having ordered porosity over a passive layer. The ordered porosity can facilitate formation of conductive channels through which charge carriers can migrate across the otherwise non-conductive layer to facilitate changing a state of a memory cell. A barrier layer can optionally be formed over the non-conductive layer, and can have ordered porosity oriented in a manner substantially perpendicular to the conductive channels such that charge carries migrating across the non-conductive layer cannot permeate the barrier layer. The methods provide for the manufacture of microelectronic devices with cost-effective and electrically reliable memory cells.Type: GrantFiled: April 20, 2005Date of Patent: August 17, 2010Assignees: Spansion LLC, GlobalFoundries Inc.Inventors: Alexander Nickel, Suzette K. Pangrle, Steven C. Avanzino, Jeffrey Shields, Fei Wang, Minh Tran, Juri H. Krieger, Igor Sokolik
-
Patent number: 7732276Abstract: A method for fabricating a memory device with a self-aligned trap layer which is optimized for scaling is disclosed. In the present invention, a non-conformal film is deposited over the charge trapping layer to form a thick film on top of the core source/drain region and a pinch off and a void or a narrow channel at the top of the STI trench. An etch is performed on the non-conformal film to open pinch-off or widen the narrow channel in the non-conformal. The trapping layer is then completely or partially etched between the core cells. The non-conformal film is removed. And a top oxide is formed. The top oxide converts the remaining trap layer to oxide if the trapping layer is partially etched and thus isolate the trap layer.Type: GrantFiled: April 26, 2007Date of Patent: June 8, 2010Assignee: Spansion LLCInventors: Shenqing Fang, Jihwan Choi, Calvin Gabriel, Fei Wang, Angela Hui, Alexander Nickel, Zubin Patel, Phillip Jones, Mark Chang, Minh-Van Ngo
-
Publication number: 20100109067Abstract: Prior to deposition of a silicon nitride (SiN) layer on a structure, a non-plasma enhanced operation is undertaken wherein the structure is exposed to silane (SiH4) flow, reducing the overall exposure of the structure to hydrogen radicals. This results in the silicon nitride being strongly bonded to the structure and in improved performance.Type: ApplicationFiled: November 5, 2008Publication date: May 6, 2010Inventors: Sung Jin Kim, Alexander Nickel, Minh-Van Ngo, Hieu Trung Pham, Masato Tsuboi, Shinich Imada