Patents by Inventor Alexander Rylyakov

Alexander Rylyakov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11953800
    Abstract: An optical resonant modulator based on coupling modulation, comprising a resonant structure with an embedded Mach-Zehnder interferometer that is differentially driven to induced amplitude modulation at the output port. The principle of coupling modulation enables high data/baud rates to be achieved in a photonic integrated circuit, e.g. silicon, footprint that is considerably smaller than that of a conventional traveling-wave Mach-Zehnder modulator, in particular by utilizing space saving features, such as ring resonator phase shifters and bend waveguide arms.
    Type: Grant
    Filed: February 9, 2022
    Date of Patent: April 9, 2024
    Assignee: Nokia Solutions and Networks Oy
    Inventors: Ajay Mistry, Meisam Bahadori, Alexander Rylyakov, Rafid Sukkar, Matthew Streshinsky
  • Publication number: 20230251546
    Abstract: An optical resonant modulator based on coupling modulation, comprising a resonant structure with an embedded Mach-Zehnder interferometer that is differentially driven to induced amplitude modulation at the output port. The principle of coupling modulation enables high data/baud rates to be achieved in a photonic integrated circuit, e.g. silicon, footprint that is considerably smaller than that of a conventional traveling-wave Mach-Zehnder modulator, in particular by utilizing space saving features, such as ring resonator phase shifters and bend waveguide arms.
    Type: Application
    Filed: February 9, 2022
    Publication date: August 10, 2023
    Inventors: Ajay Mistry, Meisam Bahadori, Alexander Rylyakov, Rafid Sukkar, Matthew Streshinsky
  • Patent number: 11599005
    Abstract: A multi-section optical modulator and related method are disclosed wherein two waveguide arms traverse a plurality of successive modulating sections. A differential drive signal is applied separately to each waveguide arm of each modulating sections in synchronism with the transmission of light along the waveguide arms, effecting a dual differential driving of each section. By suitably selecting the number of modulating sections and the section length, a high modulation bandwidth and a high modulation efficiency may be achieved simultaneously for a given peak-to-peak voltage swing of the drive signal.
    Type: Grant
    Filed: August 9, 2021
    Date of Patent: March 7, 2023
    Assignee: Nokia Solutions and Networks Oy
    Inventors: Christopher Williams, Mostafa Ahmed, Alexander Rylyakov, Richard C. Younce, Yang Liu, Ran Ding, Abdelrahman Ahmed
  • Publication number: 20230055077
    Abstract: An apparatus includes a lithium niobate (LN) layer, and a planar electro-optical modulator having at least one hybrid optical core segment formed of a portion of the LN layer and an optical guiding rib. The optical guiding rib may be located in a top silicon layer of a silicon photonics (SiP) chip, to which a thin-film LN chip is flip-chip mounted, and may be coupled to optical waveguide cores in a first silicon core layer of the SiP chip. One or more drive electrodes are disposed between a substrate of the SiP chip and the LN layer. In some embodiments hybrid optical core segments may include silicon nitride core segments and may form an MZM configured to be differentially or dual-differentially driven.
    Type: Application
    Filed: August 18, 2022
    Publication date: February 23, 2023
    Inventors: Ruizhi SHI, Ari NOVACK, Alexander RYLYAKOV, Eu-Jin Andy LIM
  • Patent number: 11309845
    Abstract: In optical receivers, extending the transimpedance amplifier's (TIA) dynamic range is a key to increasing the receiver's dynamic range, and therefore increase the channel capacity. Ideally, the TIA requires controllable gain, whereby the receiver can modify the characteristics of the TIA and/or the VGA to process high power incoming signals with a defined maximum distortion, and low power incoming signals with a defined maximum noise. A solution to the problem is to provide TIA's with reconfigurable feedback resistors, which are adjustable based on the level of power, e.g. current, generated by the photodetector, and variable load resistors, which are adjustable based on the change in impedance caused by the change in the feedback resistor.
    Type: Grant
    Filed: April 2, 2020
    Date of Patent: April 19, 2022
    Assignee: Nokia Solutions and Networks Oy
    Inventors: Ariel Leonardo Vera Villarroel, Abdelrahman Ahmed, Alexander Rylyakov
  • Patent number: 11209674
    Abstract: An optical modulator apparatus may include a plurality of segment drivers, each segment driver having a unique offset voltage and driving but a portion or a segment of an electro-optical modulator. A modulating electrical signal may be applied to the segment drivers via a plurality of electrical delays. Parameters of the segment drivers may be selected so as to approximate a pre-defined transfer function, which may include a linear or a non-linear transfer function.
    Type: Grant
    Filed: April 13, 2020
    Date of Patent: December 28, 2021
    Assignee: Nokia Solutions & Networks Oy
    Inventors: Ran Ding, Thomas Wetteland Baehr-Jones, Peter D. Magill, Michael J. Hochberg, Alexander Rylyakov
  • Publication number: 20210373409
    Abstract: A multi-section optical modulator and related method are disclosed wherein two waveguide arms traverse a plurality of successive modulating sections. A differential drive signal is applied separately to each waveguide arm of each modulating sections in synchronism with the transmission of light along the waveguide arms, affecting a dual differential driving of each section. By suitably selecting the number of modulating sections and the section length, a high modulation bandwidth and a high modulation efficiency may be achieved simultaneously for a given peak-to-peak voltage swing of the drive signal.
    Type: Application
    Filed: August 9, 2021
    Publication date: December 2, 2021
    Inventors: Christopher Williams, Mostafa Ahmed, Alexander Rylyakov, Richard C. Younce, Yang Liu, Ran Ding, Abdelrahman Ahmed
  • Patent number: 11086188
    Abstract: A multi-section optical modulator and related method are disclosed wherein two waveguide arms traverse a plurality of successive modulating sections. A differential drive signal is applied separately to each waveguide arm of each modulating sections in synchronism with the transmission of light along the waveguide arms, affecting a dual differential driving of each section. By suitably selecting the number of modulating sections and the section length, a high modulation bandwidth and a high modulation efficiency may be achieved simultaneously for a given peak-to-peak voltage swing of the drive signal.
    Type: Grant
    Filed: January 6, 2020
    Date of Patent: August 10, 2021
    Assignee: Nokia Solutions & Networks Oy
    Inventors: Christopher Williams, Mostafa Ahmed, Alexander Rylyakov, Richard C. Younce, Yang Liu, Ran Ding, Abdelrahman Ahmed
  • Patent number: 10965252
    Abstract: Modern modulator drivers must be capable of delivering a large output voltage into a tens of ohms modulator, while minimizing the amount of distortion added by the driver. The driver should deliver the output voltage without exceeding a maximum distortion while minimizing the DC power consumption. Accordingly, a modulator driver includes a final stage amplifier with auxiliary transistors that turn on when the conventional differential pair of transistors approaches their maximum voltage of the linear region of their transfer function, thereby providing a more linear transfer function, in particular at large input voltages.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: March 30, 2021
    Inventors: Ariel Leonardo Vera Villarroel, Mohamed Megahed Mabrouk Megahed, Alexander Rylyakov
  • Patent number: 10955691
    Abstract: Within a modulator driver, different blocks are employed, e.g. a buffer, one or more variable gain amplifiers (VGA), and a final driver stage. Each of these blocks has an optimum bias point for best performance; however, interconnecting the blocks requires sharing the DC bias points in their interface, which does not necessarily match the optimum performance bias point of each block. Accordingly, a first offset feedback loop extending from reference points after a selected one of the blocks to an input of one of the blocks. The first offset feedback loop includes current sources capable of delivering a variable current to the input of the selected block in order to compensate any offset in an amplified differential input electrical signal measured at the reference points. A first bias feedback loop is also provided, including a current sinker for subtracting excess current introduced in the first offset compensation feedback loop.
    Type: Grant
    Filed: June 13, 2019
    Date of Patent: March 23, 2021
    Assignee: Elenion Technologies, LLC
    Inventors: Ariel Leonardo Vera Villarroel, Abdelrahman Ahmed, Daihyun Lim, Alexander Rylyakov
  • Patent number: 10958230
    Abstract: In optical receivers, extending the transimpedance amplifier's (TIA) dynamic range is a key to increasing the receiver's dynamic range, and therefore increase the channel capacity. Ideally, the TIA requires controllable gain, whereby the receiver can modify the characteristics of the TIA and/or the VGA to process high power incoming signals with a defined maximum distortion, and low power incoming signals with a defined maximum noise. A solution to the problem is to provide TIA's and VGA's with reconfigurable sizes, which are adjustable based on the level of power, e.g. current, generated by the photodetector.
    Type: Grant
    Filed: September 10, 2018
    Date of Patent: March 23, 2021
    Assignee: Elenion Technologies, LLC
    Inventors: Ariel Leonardo Vera Villarroel, Abdelrahman Ahmed, Alexander Rylyakov
  • Patent number: 10944486
    Abstract: In high data rate receivers, comprising a photodetector (PD) and a transimpedance amplifier (TIA), a transmitted optical signal typically has poor extinction ratio, which translates into a small modulated current with a large DC current at the output of the PD. The large DC current saturates the TIA, which significantly degrades the gain and bandwidth performance. Accordingly, cancelling photo diode DC current in high data rate receivers is important for proper receiver operation. A DC current cancellation loop, comprising a low pass filter section and a trans-conductance cell (GM) are connected to the input of the TIA. PD DC current IDC is drawn from the input node of the TIA in the GM cell, such that the cancellation loop maintains the DC voltage value of the TIA input node to be the same as a reference voltage (VREF).
    Type: Grant
    Filed: December 6, 2017
    Date of Patent: March 9, 2021
    Assignee: Elenion Technologies, LLC
    Inventors: Mostafa Ahmed, Alexander Rylyakov
  • Patent number: 10944482
    Abstract: A coherent optical receiver for AM optical signals has a photonic integrated circuit (PIC) as an optical front-end. The PIC includes a polarization beam splitter followed by two optical hybrids each followed by an opto-electric (OE) converter. Each OE converter includes one or more differential detectors and one or more squaring circuits, which outputs may be summed. The PIC may further include integrated polarization controllers, wavelength demultiplexers, and/or tunable dispersion compensators.
    Type: Grant
    Filed: May 29, 2019
    Date of Patent: March 9, 2021
    Assignee: Elenion Technologies, LLC
    Inventors: Richard C. Younce, Alexander Rylyakov, Michael J. Hochberg
  • Patent number: 10931381
    Abstract: In optical receivers, cancelling the DC component of the incoming current is a key to increasing the receiver's effectiveness, and therefore increase the channel capacity. Ideally, the receiver includes a DC cancellation circuit for removing the DC component; however, in differential receivers an offset may be created between the output voltage components caused by the various amplifiers. Accordingly, an offset cancellation circuit is required to determine the offset and to modify the DC cancellation circuit accordingly.
    Type: Grant
    Filed: April 2, 2020
    Date of Patent: February 23, 2021
    Assignee: Elenion Technologies, LLC
    Inventors: Ariel Leonardo Vera Villarroel, Abdelrahman Ahmed, Alexander Rylyakov
  • Publication number: 20200393706
    Abstract: Within a modulator driver, different blocks are employed, e.g. a buffer, one or more variable gain amplifiers (VGA), and a final driver stage. Each of these blocks has an optimum bias point for best performance; however, interconnecting the blocks requires sharing the DC bias points in their interface, which does not necessarily match the optimum performance bias point of each block.. Accordingly, a first offset feedback loop extending from reference points after a selected one of the blocks to an input of one of the blocks. The first offset feedback loop includes current sources capable of delivering a variable current to the input of the selected block in order to compensate any offset in an amplified differential input electrical signal measured at the reference points. A first bias feedback loop is also provided, including a current sinker for subtracting excess current introduced in the first offset compensation feedback loop.
    Type: Application
    Filed: June 13, 2019
    Publication date: December 17, 2020
    Inventors: Ariel Leonardo Vera Villarroel, Abdelrahman Ahmed, Daihyun Lim, Alexander Rylyakov
  • Patent number: 10862716
    Abstract: An optical coherent receiver includes an optical hybrid (OH) configured to mix signal and reference light, and two back-end optical ports. An optical equalizing network interconnects two 180° OH output ports with the two back-end optical ports so that each back-end optical port receives light from each of the two OH output ports. Optical signals from each of the two back-end optical ports are converted to electrical signals that are fed to a differential amplifier. Adjusting coupling ratios and/or optical delays in the optical equalizing network reduces an OSNR penalty of a lower-bandwidth differential amplifier.
    Type: Grant
    Filed: September 19, 2019
    Date of Patent: December 8, 2020
    Assignee: Elenion Technologies, Inc.
    Inventors: Abdelrahman Ahmed, Ruizhi Shi, Alexander Rylyakov, Richard C. Younce
  • Publication number: 20200382217
    Abstract: A coherent optical receiver for AM optical signals has a photonic integrated circuit (PIC) as an optical front-end. The PIC includes a polarization beam splitter followed by two optical hybrids each followed by an opto-electric (OE) converter. Each OE converter includes one or more differential detectors and one or more squaring circuits, which outputs may be summed. The PIC may further include integrated polarization controllers, wavelength demultiplexers, and/or tunable dispersion compensators.
    Type: Application
    Filed: May 29, 2019
    Publication date: December 3, 2020
    Inventors: Richard C. Younce, Alexander Rylyakov, Michael J. Hochberg
  • Patent number: 10831081
    Abstract: A dual-differential optical modulator includes two optical waveguide arms, each including one or more phase modulating p/n junctions. The p/n junctions in each waveguide arm are electrically coupled between a same pair of single-ended transmission lines so as to be differentially push-pull modulated when the transmission line pair is connected to a differential driver. Either cathode or anode electrodes of the p/n junctions are AC coupled to the transmission lines and DC biased independently on the transmission line signals.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: November 10, 2020
    Assignee: Elenion Technologies, LLC
    Inventors: Ariel Leonardo Vera Villarroel, Alexander Rylyakov, Yangjin Ma
  • Publication number: 20200336109
    Abstract: Modern modulator drivers must be capable of delivering a large output voltage into a tens of ohms modulator, while minimizing the amount of distortion added by the driver. The driver should deliver the output voltage without exceeding a maximum distortion while minimizing the DC power consumption. Accordingly, a modulator driver includes a final stage amplifier with auxiliary transistors that turn on when the conventional differential pair of transistors approaches their maximum voltage of the linear region of their transfer function, thereby providing a more linear transfer function, in particular at large input voltages.
    Type: Application
    Filed: June 30, 2020
    Publication date: October 22, 2020
    Inventors: Ariel Leonardo Vera Villarroel, Mohamed Megahed Mabrouk Megahed, Alexander Rylyakov
  • Patent number: 10756690
    Abstract: In conventional optical receivers the dynamic range is obtained by using variable gain amplifiers (VGA) with a fixed trans-impedance amplifier (TIA) gain. To overcome the SNR problems inherent in conventional receivers an improved optical receiver comprises an automatic gain control loop for generating at least one gain control signal for controlling gain of both the VGA and the TIA. Ideally, both the resistance and the gain of the TIA are controlled by a gain control signal.
    Type: Grant
    Filed: March 3, 2020
    Date of Patent: August 25, 2020
    Assignee: Elenion Technologies, LLC
    Inventors: Mostafa Ahmed, Alexander Rylyakov