Patents by Inventor Alexander Usoskin

Alexander Usoskin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140357496
    Abstract: A superconducting device (1) has an elongated coated conductor (2), with a substrate (3) and a quenchable superconducting film (4), wherein the elongated coated conductor (2) has a width W, and an external shunt system (5), with bridge contacts (6; 6a, 6b), electrically connected to the superconducting film (4), and a resistive member (7), thermally insulated from the coated conductor (2) and electrically connected to the bridge contacts (6; 6a, 6b). The device is is characterized in that the bridge contacts (6; 6a, 6b) along the elongated coated conductor (2) have a spacing SP with SP?8*W. The device reduces the risk of a burnout of a superconducting device in case of a quench in its superconducting film.
    Type: Application
    Filed: May 28, 2013
    Publication date: December 4, 2014
    Inventor: Alexander Usoskin
  • Patent number: 8826674
    Abstract: A cryostat for electric power conditioner comprising external walls (1, 3, 11) in contact with an ambient medium, internal walls (2, 12, 13) in contact with a cooled medium and a thermal insulating gap (4, 14) formed between the external walls (1, 3, 11) and the internal walls (2, 12, 13). At least one part of the at least one external wall (1, 3, 11) and/or at least one part of the at least one internal wall (2, 12, 13) of the cryostat comprises a layered structure (15, 16, 17).
    Type: Grant
    Filed: July 9, 2009
    Date of Patent: September 9, 2014
    Assignee: Bruker HTS GmbH
    Inventor: Alexander Usoskin
  • Patent number: 8809236
    Abstract: A method for manufacturing a high temperature superconductor (=HTS) coated tape (20), with the following steps: preparation of a substrate tape (1), deposition of at least one buffer layer (2), deposition of an HTS film (3), deposition of a metallic protection layer (35) on the HTS film (3) and deposition of a metallic shunt layer (36) is characterized in that, prior to deposition of the metallic shunt layer (36), the partially prepared coated tape (10) undergoes a laser beam cutting in order to provide a desired tape form, wherein the laser beam cutting is applied together with a gas flow and/or a liquid flow (23). The method reduces the loss of critical current and reduces or avoids a deterioration of the critical temperature in a HTS coated tape due to tape cutting.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: August 19, 2014
    Assignees: Oswald Elektromotoren GmbH, Bruker HTS GmbH
    Inventors: Johannes Oswald, Bernhard Oswald, Thomas Reis, Alexander Rutt, Alexander Usoskin
  • Patent number: 8802598
    Abstract: A superconducting element (SE1-SE5) with a central section (20) located between two end sections (21a, 21b) of the superconducting element (SE1-SE5), the superconducting element (SE1-SE5) has a substrate tape (10), a buffer layer (11), a high temperature superconducting (HTS) layer (12), a first protection layer (14), and a shunt layer (17), The superconducting element (SE1-SE5) has at least one elongated opening (19) in the central section (20) elongated between the two end sections (21a, 21b), whereby the at least one elongated opening (19) divides the central section (20) of the superconducting element (SE1-SE5) into at least two HTS strips (18a, 18b, 18c), whereby the shunt layer (17) envelops the surface of each of the HTS strips (18a, 18b, 18c). The superconducting element shows improved electrical stabilization and time stability.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: August 12, 2014
    Assignee: Bruker HTS GmbH
    Inventor: Alexander Usoskin
  • Publication number: 20140098451
    Abstract: An inductive fault current limiter (1) has a normally conducting primary coil assembly (2) with a multiplicity of turns (3) and a superconducting, short-circuited secondary coil assembly (4), wherein the primary coil assembly (2) and the secondary coil assembly (4) are at least substantially coaxial with respect to each other and at least partially interleaved in each other. The primary coil assembly (2) has a first coil section (2a) and a second coil section (2b), wherein the turns (3) of the first coil section (2a) of the primary coil assembly (2) are disposed radially inside the secondary coil assembly (4) and the turns (3) of the second coil section (2b) of the primary coil assembly (2) are disposed radially outside the secondary coil assembly (4). The fault current limiter has an increased inductance ratio.
    Type: Application
    Filed: September 26, 2013
    Publication date: April 10, 2014
    Inventors: Klaus Schlenga, Alexander Usoskin
  • Publication number: 20140100119
    Abstract: A superconducting structure (1) has a plurality of linked band-segments (2), with each linked band-segment (2) having a substrate (3) and a superconducting layer deposited onto it (4). The linked band-segments (2) are joined to one another by superconducting layers (4) that face each other. Each linked band-segment (2) is joined to two additional band-segments (7a, 7b) in such a way that the superconducting layers (4) of the two additional band-segments (7a, 7b) and of the linked band-segment (2) face each other. The additional band-segments (7a, 7b) together substantially overlap the total length (L) of the linked band-segment (2). This provides for a superconducting structure, which exhibits high superconductivity and which is very suitable for long distances.
    Type: Application
    Filed: October 7, 2013
    Publication date: April 10, 2014
    Inventors: Klaus Schlenga, Alexander Usoskin
  • Publication number: 20140100116
    Abstract: An inductive fault current limiter (1), has a normally conducting primary coil assembly (2) with a multiplicity of turns (3), and a superconducting, short-circuited secondary coil assembly (4). The primary coil assembly (2) and the secondary coil assembly (4) are disposed at least substantially coaxially with respect to each other and at least partially interleaved in each other. The secondary coil assembly (4) has a first coil section (4a) disposed radially inside the turns (3) of the primary coil assembly (2) and a second coil section (4b) disposed radially outside the turns (3) of the primary coil assembly (2). The fault current limiter has an increased inductance ratio.
    Type: Application
    Filed: September 30, 2013
    Publication date: April 10, 2014
    Inventors: Klaus Schlenga, Alexander Usoskin
  • Publication number: 20140066315
    Abstract: A superconducting device (1; 1a, 1b), having a coated conductor (2) with a substrate (3) and a quenchable superconducting film (4), wherein the coated conductor (2) has a width W and a length L, is characterized in that 0.5?L/W?10, in particular 0.5?L/W?8, and that the coated conductor (2) has an engineering resistivity ?eng shunting the superconducting film (4) in a quenched state, with ?eng>2.5?, wherein RIntShunt=?eng*L/W, with RIntShunt: internal shunt resistance of the coated conductor (2). The risk of a burnout of a superconducting device in case of a quench in its superconducting film is thereby further reduced.
    Type: Application
    Filed: May 29, 2013
    Publication date: March 6, 2014
    Inventor: Alexander Usoskin
  • Patent number: 8629087
    Abstract: A high temperature superconductor (=HTS) coated conductor (1), comprising an HTS layer (11) deposited epitaxially on a substrate (2), wherein the HTS layer (11) exhibits a lattice with a specific crystal axis being oriented perpendicular to the substrate plane (SP), in particular wherein the HTS layer material is of ReBCO type and the c-axis (c) is oriented perpendicular to the substrate plane (SP), wherein the HIS layer (11) comprises particle inclusions (4), in particular wherein the particle inclusions (4) may be used to introduce pinning of magnetic flux, is characterized in that at least a part (4a) of the particle inclusions (4) are formed of the same material as the HTS layer (11), and/or of chemical fractions of the material of the HTS layer (11), such that the average stoichiometry of said part (4a) of the particle inclusions (4) corresponds to the stoichiometry of the HTS layer (11), and that the particle inclusions of said part (4a) are discontinuities of the lattice of the HTS layer (11).
    Type: Grant
    Filed: July 18, 2011
    Date of Patent: January 14, 2014
    Assignee: Bruker HTS GmbH
    Inventors: Alexander Usoskin, Klaus Schlenga
  • Patent number: 8411401
    Abstract: A method for current conditioning, comprising transporting a primary current (1) through a primary coil (2), coupling a secondary coil (3) to the primary coil (2) via a common magnetic flux, wherein the secondary coil (3) comprises a superconductor capable of quenching, with the quenching causing a transition of the superconductor from a low resistance superconducting state to a high resistance quenched state, and in the low resistance superconducting state of the secondary coil (3), guiding a major fraction (8) of the common magnetic flux of the primary coil (2) and the secondary coil (3) within a ferromagnetic medium (5a), is characterized by upon quenching, switching the common magnetic flux such that a major fraction (17) of the common magnetic flux is guided outside the ferromagnetic medium (5a) in the high resistance quenched state of the superconductor. An economic and efficient method for current conditioning is thereby provided which reduces harmonic distortions.
    Type: Grant
    Filed: September 15, 2010
    Date of Patent: April 2, 2013
    Assignee: Bruker HTS GmbH
    Inventors: Alexander Usoskin, Hans-Udo Klein
  • Patent number: 8369912
    Abstract: A superconducting cable (1; 10; 30) has a channel (4, 38) for a cooling liquid, a tubular support structure (5, 37), at least two layers (2, 3; 11-15; 31, 32, 35, 36) comprising high Tc conductors (2a, 3a) which comprise a high Tc material, and an insulation (7, 17), in particular a tubular insulation (7). The conductors (3a) of the outer layer (3; 13-15; 33, 36) comprise a first high Tc material that is different from a second high Tc material of the conductors (2a) of the inner layer (2; 11-12; 32, 35), wherein the first high Tc material exhibits lower AC losses as compared the second high Tc material, and that the high Tc conductors (3a) of the outer layer (3; 13-15; 33, 36) comprise normal-conducting interruptions (41, 42, 43). The superconducting cable exhibits reduced AC losses.
    Type: Grant
    Filed: July 7, 2009
    Date of Patent: February 5, 2013
    Assignee: Bruker HTS GmbH
    Inventor: Alexander Usoskin
  • Patent number: 8283293
    Abstract: A method for producing a high temperature superconductor (=HTS) coated conductor (12), wherein a buffer layer (2; 22) and an HTS layer (4; 24; 65) are deposited on a substrate (1; 21), with the following steps: a) after depositing the buffer layer (2; 22), the surface (2a) is locally roughened, resulting in a roughened surface (13), b) a non-superconducting, closed intermediate layer (3; 23) is deposited on top of the roughened surface (13), c) and the HTS layer (4; 24; 65) is deposited on top of the intermediate layer (3; 23). A simple method for producing a HTS coated conductor with reduced losses, and with improved critical current and critical magnetic field is thereby provided.
    Type: Grant
    Filed: July 18, 2011
    Date of Patent: October 9, 2012
    Assignee: Bruker HTS GmbH
    Inventors: Klaus Schlenga, Alexander Usoskin
  • Patent number: 8275431
    Abstract: A tape-type superconductor (1), comprising an elongated substrate (2), in particular a metal tape, and a continuous superconducting layer (3), in particular of a HTS type material, deposited on the substrate (2), is characterized in that Ic?/Ic??1.5, with Ic? being the width density of critical current of the continuous superconducting layer (3) in parallel to the substrate (2) and in parallel to the elongated direction of the substrate (2), and with Ic? being the width density of critical current of the continuous superconducting layer (3) in parallel to the substrate (2) and perpendicular to the elongated direction of the substrate (2). The tape-type superconductor has reduced ac losses.
    Type: Grant
    Filed: April 25, 2011
    Date of Patent: September 25, 2012
    Assignee: Bruker HTS GmbH
    Inventors: Alexander Usoskin, Klaus Schlenga
  • Patent number: 8252724
    Abstract: A fault current limiter, with a superconducting device (1; 21; 31; 41; 51; 61; 71; 72) comprising a sequence of superconducting elements (2a-2f), each with—a substrate (3a-3d), —a superconducting film (5a-5d), and —an intermediate layer (4a-4c) provided between the substrate and the superconducting film, wherein the superconducting films (5a-5d) of adjacent superconducting elements (2a-2f) of the sequence are electrically connected, in particular in series, is characterized in that the substrates (3a-3d) of the superconducting elements (2a-2d) are electrically conducting substrates (3a-3d), wherein the electrically conducting substrate (3a-3d) of each superconducting element (2a-2f) of the sequence is electrically insulated from each electrically conducting substrate (3a-3d) of those adjacent superconducting elements (2a-2f) within the sequence whose superconducting films (5a-5d) are electrically connected in series with the superconducting film (5a-5d) of said superconducting element (2a-2f), and that the in
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: August 28, 2012
    Assignees: Areva T & D SAS, Bruker HTS GmbH
    Inventors: Francis James Mumford, Alexander Usoskin
  • Patent number: 8252725
    Abstract: A fault current limiter, with a superconducting device (1; 21; 31; 41; 51; 61; 71; 72) comprising a sequence of superconducting elements (2a-2f), each with an electrically conducting substrate (3a-3d), a superconducting film (5a-5d), and an electrically insulating intermediate layer (4a-4c) provided between the substrate and the superconducting film, wherein the superconducting films (5a-5d) of adjacent superconducting elements (2a-2f) of the sequence are electrically connected, in particular in series, wherein the electrically conducting substrate (3a-3d) of each superconducting element (2a-2f) of the sequence is electrically insulated from each electrically conducting substrate (3a-3d) of those adjacent superconducting elements (2a-2f) within the sequence whose superconducting films (5a-5d) are electrically connected in series with the superconducting film (5a-5d) of said superconducting element (2a-2f).
    Type: Grant
    Filed: August 5, 2011
    Date of Patent: August 28, 2012
    Assignees: Areva T & D SAS, Bruker HTS GmbH
    Inventors: Francis James Mumford, Alexander Usoskin
  • Publication number: 20120214673
    Abstract: A superconducting element (SE1-SE5) with a central section (20) located between two end sections (21a, 21b) of the superconducting element (SE1-SE5), the superconducting element (SE1-SE5) has a substrate tape (10), a buffer layer (11), a high temperature superconducting (HTS) layer (12), a first protection layer (14), and a shunt layer (17), The superconducting element (SE1-SE5) has at least one elongated opening (19) in the central section (20) elongated between the two end sections (21a, 21b), whereby the at least one elongated opening (19) divides the central section (20) of the superconducting element (SE1-SE5) into at least two HTS strips (18a, 18b, 18c), whereby the shunt layer (17) envelops the surface of each of the HTS strips (18a, 18b, 18c). The superconducting element shows improved electrical stabilization and time stability.
    Type: Application
    Filed: February 15, 2012
    Publication date: August 23, 2012
    Inventor: Alexander Usoskin
  • Publication number: 20120211475
    Abstract: A method for manufacturing a high temperature superconductor (=HTS) coated tape (20), with the following steps: preparation of a substrate tape (1), deposition of at least one buffer layer (2), deposition of an HTS film (3), deposition of a metallic protection layer (35) on the HTS film (3) and deposition of a metallic shunt layer (36) is characterized in that, prior to deposition of the metallic shunt layer (36), the partially prepared coated tape (10) undergoes a laser beam cutting in order to provide a desired tape form, wherein the laser beam cutting is applied together with a gas flow and/or a liquid flow (23). The method reduces the loss of critical current and reduces or avoids a deterioration of the critical temperature in a HTS coated tape due to tape cutting.
    Type: Application
    Filed: February 15, 2012
    Publication date: August 23, 2012
    Inventors: Johannes Oswald, Bernhard Oswald, Thomas Reis, Alexander Rutt, Alexander Usoskin
  • Patent number: 8247354
    Abstract: A fault current limiter and a method for the production thereof has a superconducting device (1; 21; 31; 41; 51; 61; 71; 72) comprising a sequence of superconducting elements (2a-2f), each with an electrically conducting substrate (3a-3d), a superconducting film (5a-5d) and an electrically insulating intermediate layer (4a-4c) provided between the substrate and the superconducting film. The superconducting films (5a-5d) of adjacent superconducting elements (2a-2f) of the sequence are electrically connected, in particular in series, wherein the electrically conducting substrate (3a-3d) of each superconducting element (2a-2f) of the sequence is electrically insulated from each electrically conducting substrate (3a-3d) of those adjacent superconducting elements (2a-2f) within the sequence whose superconducting films (5a-5d) are electrically connected in series with the superconducting film (5a-5d) of said superconducting element (2a-2f).
    Type: Grant
    Filed: August 5, 2011
    Date of Patent: August 21, 2012
    Assignees: Areva T & D SAS, Bruker HTS GmbH
    Inventors: Francis James Mumford, Alexander Usoskin
  • Patent number: 8150486
    Abstract: The device has a quenchable superconductor (1), a first metallic member (2) electrically coupled with the quenchable superconductor (1), a second metallic member (3) electrically coupled to the first metallic member (2). The first metallic member (2) is thermally and electrically coupled with the quenchable superconductor (1) due to their direct surface contact. The superconducting device has a second metallic member (3) with a resistive element (4) and an electrical coupling (5) with the first metallic member (2). The resistive element (4) of the second metallic member (3) is thermally decoupled from the first metallic member (2). The first metallic member (2) has a substantially higher electrical resistance compared to the second metallic member (3).
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: April 3, 2012
    Assignee: Bruker HTS GmbH
    Inventor: Alexander Usoskin
  • Publication number: 20120015818
    Abstract: A method for producing a high temperature superconductor (=HTS) coated conductor (12), wherein a buffer layer (2; 22) and an HTS layer (4; 24; 65) are deposited on a substrate (1; 21), with the following steps: a) after depositing the buffer layer (2; 22), the surface (2a) is locally roughened, resulting in a roughened surface (13), b) a non-superconducting, closed intermediate layer (3; 23) is deposited on top of the roughened surface (13), c) and the HTS layer (4; 24; 65) is deposited on top of the intermediate layer (3; 23). A simple method for producing a HTS coated conductor with reduced losses, and with improved critical current and critical magnetic field is thereby provided.
    Type: Application
    Filed: July 18, 2011
    Publication date: January 19, 2012
    Applicant: Bruker HTS GmbH
    Inventors: Klaus Schlenga, Alexander Usoskin