Patents by Inventor Alexander Usoskin

Alexander Usoskin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120015814
    Abstract: A high temperature superconductor (=HTS) coated conductor (1), comprising an HTS layer (11) deposited epitaxially on a substrate (2), wherein the HTS layer (11) exhibits a lattice with a specific crystal axis being oriented perpendicular to the substrate plane (SP), in particular wherein the HTS layer material is of ReBCO type and the c-axis (c) is oriented perpendicular to the substrate plane (SP), wherein the HIS layer (11) comprises particle inclusions (4),in particular wherein the particle inclusions (4) may be used to introduce pinning of magnetic flux, is characterized in that at least a part (4a) of the particle inclusions (4) are formed of the same material as the HTS layer (11), and/or of chemical fractions of the material of the HTS layer (11), such that the average stoichiometry of said part (4a) of the particle inclusions (4) corresponds to the stoichiometry of the HTS layer (11), and that the particle inclusions of said part (4a) are discontinuities of the lattice of the HTS layer (11).
    Type: Application
    Filed: July 18, 2011
    Publication date: January 19, 2012
    Applicant: Bruker HTS GmbH
    Inventors: Alexander Usoskin, Klaus Schlenga
  • Publication number: 20120002336
    Abstract: A method for current conditioning, comprising transporting a primary current (1) through a primary coil (2), coupling a secondary coil (3) to the primary coil (2) via a common magnetic flux, wherein the secondary coil (3) comprises a superconductor capable of quenching, with the quenching causing a transition of the superconductor from a low resistance superconducting state to a high resistance quenched state, and in the low resistance superconducting state of the secondary coil (3), guiding a major fraction (8) of the common magnetic flux of the primary coil (2) and the secondary coil (3) within a ferromagnetic medium (5a), is characterized by upon quenching, switching the common magnetic flux such that a major fraction (17) of the common magnetic flux is guided outside the ferromagnetic medium (5a) in the high resistance quenched state of the superconductor. An economic and efficient method for current conditioning is thereby provided which reduces harmonic distortions.
    Type: Application
    Filed: September 15, 2010
    Publication date: January 5, 2012
    Inventors: Alexander Usoskin, Hans-Udo Klein
  • Publication number: 20110294670
    Abstract: A fault current limiter and a method for the production thereof has a superconducting device (1; 21; 31; 41; 51; 61; 71; 72) comprising a sequence of superconducting elements (2a-2f), each with an electrically conducting substrate (3a-3d), a superconducting film (5a-5d) and an electrically insulating intermediate layer (4a-4c) provided between the substrate and the superconducting film. The superconducting films (5a-5d) of adjacent superconducting elements (2a-2f) of the sequence are electrically connected, in particular in series, wherein the electrically conducting substrate (3a-3d) of each superconducting element (2a-2f) of the sequence is electrically insulated from each electrically conducting substrate (3a-3d) of those adjacent superconducting elements (2a-2f) within the sequence whose superconducting films (5a-5d) are electrically connected in series with the superconducting film (5a-5d) of said superconducting element (2a-2f).
    Type: Application
    Filed: August 5, 2011
    Publication date: December 1, 2011
    Inventors: Francis James Mumford, Alexander Usoskin
  • Publication number: 20110294671
    Abstract: A fault current limiter, with a superconducting device (1; 21; 31; 41; 51; 61; 71; 72) comprising a sequence of superconducting elements (2a-2f), each with an electrically conducting substrate (3a-3d), a superconducting film (5a-5d), and an electrically insulating intermediate layer (4a-4c) provided between the substrate and the superconducting film, wherein the superconducting films (5a-5d) of adjacent superconducting elements (2a-2f) of the sequence are electrically connected, in particular in series, wherein the electrically conducting substrate (3a-3d) of each superconducting element (2a-2f) of the sequence is electrically insulated from each electrically conducting substrate (3a-3d) of those adjacent superconducting elements (2a-2f) within the sequence whose superconducting films (5a-5d) are electrically connected in series with the superconducting film (5a-5d) of said superconducting element (2a-2f).
    Type: Application
    Filed: August 5, 2011
    Publication date: December 1, 2011
    Inventors: Francis James Mumford, Alexander Usoskin
  • Publication number: 20110281735
    Abstract: A fault current limiter, with a superconducting device (1; 21; 31; 41; 51; 61; 71; 72) comprising a sequence of superconducting elements (2a-2f), each with—a substrate (3a-3d), —a superconducting film (5a-5d), and —an intermediate layer (4a-4c) provided between the substrate and the superconducting film, wherein the superconducting films (5a-5d) of adjacent superconducting elements (2a-2f) of the sequence are electrically connected, in particular in series, is characterized in that the substrates (3a-3d) of the superconducting elements (2a-2d) are electrically conducting substrates (3a-3d), wherein the electrically conducting substrate (3a-3d) of each superconducting element (2a-2f) of the sequence is electrically insulated from each electrically conducting substrate (3a-3d) of those adjacent superconducting elements (2a-2f) within the sequence whose superconducting films (5a-5d) are electrically connected in series with the superconducting film (5a-5d) of said superconducting element (2a-2f), and that the in
    Type: Application
    Filed: November 25, 2009
    Publication date: November 17, 2011
    Inventors: Francis James Mumford, Alexander Usoskin
  • Publication number: 20110263432
    Abstract: A tape-type superconductor (1), comprising an elongated substrate (2), in particular a metal tape, and a continuous superconducting layer (3), in particular of a HTS type material, deposited on the substrate (2), is characterized in that Ic?/Ic??1.5, with Ic? being the width density of critical current of the continuous superconducting layer (3) in parallel to the substrate (2) and in parallel to the elongated direction of the substrate (2), and with Ic? being the width density of critical current of the continuous superconducting layer (3) in parallel to the substrate (2) and perpendicular to the elongated direction of the substrate (2). The tape-type superconductor has reduced ac losses.
    Type: Application
    Filed: April 25, 2011
    Publication date: October 27, 2011
    Applicant: Bruker HTS GmbH
    Inventors: Alexander Usoskin, Klaus Schlenga
  • Patent number: 7829156
    Abstract: A method and an apparatus serve to produce thin films having a biaxial crystal orientation. The method includes the steps of: depositing atoms on a substrate, the atoms having a composition corresponding to the thin film to be produced; bombarding the deposited atoms with an energized beam, the energized beam being oriented with respect to the substrate at an angle of a defined range of angles, the step of bombarding substantially taking place during a different time period than the step of depositing; and alternately repeating the step of depositing and the step of bombarding for a plurality of times.
    Type: Grant
    Filed: February 16, 2006
    Date of Patent: November 9, 2010
    Assignee: Bruker HTS GmbH
    Inventors: Alexander Usoskin, Lutz Kirchhoff
  • Publication number: 20100099571
    Abstract: A superconducting cable (1; 10; 30) has a channel (4, 38) for a cooling liquid, a tubular support structure (5, 37), at least two layers (2, 3; 11-15; 31, 32, 35, 36) comprising high Tc conductors (2a, 3a) which comprise a high Tc material, and an insulation (7, 17), in particular a tubular insulation (7). The conductors (3a) of the outer layer (3; 13-15; 33, 36) comprise a first high Tc material that is different from a second high Tc material of the conductors (2a) of the inner layer (2; 11-12; 32, 35), wherein the first high Tc material exhibits lower AC losses as compared the second high Tc material, and that the high Tc conductors (3a) of the outer layer (3; 13-15; 33, 36) comprise normal-conducting interruptions (41, 42, 43). The superconducting cable exhibits reduced AC losses.
    Type: Application
    Filed: July 7, 2009
    Publication date: April 22, 2010
    Applicant: Bruker HTS GmbH
    Inventor: Alexander Usoskin
  • Publication number: 20100005813
    Abstract: A cryostat for electric power conditioner comprising external walls (1, 3, 11) in contact with an ambient medium, internal walls (2, 12, 13) in contact with a cooled medium and a thermal insulating gap (4, 14) formed between the external walls (1, 3, 11) and the internal walls (2, 12, 13). At least one part of the at least one external wall (1, 3, 11) and/or at least one part of the at least one internal wall (2, 12, 13) of the cryostat comprises a layered structure (15, 16, 17).
    Type: Application
    Filed: July 9, 2009
    Publication date: January 14, 2010
    Applicant: Bruker HTS GmbH
    Inventor: Alexander Usoskin
  • Publication number: 20090270261
    Abstract: The device has a quenchable superconductor (1), a first metallic member (2) electrically coupled with the quenchable superconductor (1), a second metallic member (3) electrically coupled to the first metallic member (2). The first metallic member (2) is thermally and electrically coupled with the quenchable superconductor (1) due to their direct surface contact. The superconducting device has a second metallic member (3) with a resistive element (4) and an electrical coupling (5) with the first metallic member (2). The resistive element (4) of the second metallic member (3) is thermally decoupled from the first metallic member (2). The first metallic member (2) has a substantially higher electrical resistance compared to the second metallic member (3).
    Type: Application
    Filed: March 4, 2009
    Publication date: October 29, 2009
    Applicant: Bruker HTS GmbH
    Inventor: Alexander Usoskin
  • Patent number: 7586717
    Abstract: An electrical device for current conditioning has a primary spool, a secondary spool which has a quenchable superconductor exhibiting a transition from a low resistive state to a high resistive state when a critical value of the electric current is exceeded. The secondary spool is coupled through a common part of magnetic flux with the primary spool, the secondary spool further has a metallic member 6 which form a closed loop circuit, and a cryostat 5 providing a cooling of the secondary spool. The secondary spool 2,3 has at least one element 3 based on a substantial fraction of a non-quenchable conductor that exhibits a minor dependence of its resistance on current and magnetic field, and a fraction of the quenchable superconductor and at least one turn of the non-quenchable conductor 3 and the quenchable superconductor 2 is electrically jointed in series providing a closed loop circuit.
    Type: Grant
    Filed: January 11, 2007
    Date of Patent: September 8, 2009
    Assignee: European High Temperature Superconductors GmbH & Co. KG
    Inventors: Alexander Usoskin, Burkhard Prause
  • Patent number: 7394628
    Abstract: An apparatus for regulation of electrical power has a superconducting member exhibiting a capability of quenching at the electrical current exceeding a threshold value, a metallic member coupled to the superconducting member, a thermally insulated and tight internal container filled with a portion of a liquid fraction of a cooling agent and a portion of a gas fraction of the cooling agent. The internal container being capable to provide a cooling of the superconducting member and the metallic member by their direct contact with the liquid fraction of the cooling agent in and to provide a mass exchange of the cooling agent between the internal container and an external container. The mass exchange of the cooling agent has a mass flow controller for the cooling agent which is output from the inner container; a controller of an instantaneous pressure in the internal container, and a delay circuit providing a pre-determined time-delay for mass flow controller operation.
    Type: Grant
    Filed: January 11, 2007
    Date of Patent: July 1, 2008
    Assignee: European High Temperature Superconductors
    Inventor: Alexander Usoskin
  • Publication number: 20070184985
    Abstract: An apparatus for regulation of electrical power has a superconducting member exhibiting a capability of quenching at the electrical current exceeding a threshold value, a metallic member coupled to the superconducting member, a thermally insulated and tight internal container filled with a portion of a liquid fraction of a cooling agent and a portion of a gas fraction of the cooling agent. The internal container being capable to provide a cooling of the superconducting member and the metallic member by their direct contact with the liquid fraction of the cooling agent in and to provide a mass exchange of the cooling agent between the internal container and an external container. The mass exchange of the cooling agent has a mass flow controller for the cooling agent which is output from the inner container; a controller of an instantaneous pressure in the internal container, and a delay circuit providing a pre-determined time-delay for mass flow controller operation.
    Type: Application
    Filed: January 11, 2007
    Publication date: August 9, 2007
    Inventor: Alexander Usoskin
  • Publication number: 20070173410
    Abstract: An electrical device for current conditioning has a primary spool, a secondary spool which has a quenchable superconductor exhibiting a transition from a low resistive state to a high resistive state when a critical value of the electric current is exceeded. The secondary spool is coupled through a common part of magnetic flux with the primary spool, the secondary spool further has a metallic member 6 which form a closed loop circuit, and a cryostat 5 providing a cooling of the secondary spool. The secondary spool 2,3 has at least one element 3 based on a substantial fraction of a non-quenchable conductor that exhibits a minor dependence of its resistance on current and magnetic field, and a fraction of the quenchable superconductor and at least one turn of the non-quenchable conductor 3 and the quenchable superconductor 2 is electrically jointed in series providing a closed loop circuit.
    Type: Application
    Filed: January 11, 2007
    Publication date: July 26, 2007
    Inventors: Alexander Usoskin, Burkhard Prause
  • Publication number: 20060182891
    Abstract: A method and an apparatus serve to produce thin films having a biaxial crystal orientation. The method includes the steps of: depositing atoms on a substrate, the atoms having a composition corresponding to the thin film to be produced; bombarding the deposited atoms with an energized beam, the energized beam being oriented with respect to the substrate at an angle of a defined range of angles, the step of bombarding substantially taking place during a different time period than the step of depositing; and alternately repeating the step of depositing and the step of bombarding for a plurality of times.
    Type: Application
    Filed: February 16, 2006
    Publication date: August 17, 2006
    Inventors: Alexander Usoskin, Lutz Kirchhoff
  • Patent number: 6541121
    Abstract: A superconducting element comprising a high temperature superconducting film deposited on a stainless steel substrate that includes a composition of nickel; chromium; silicon; manganese; and iron. Optionally, carbon; phosphorous; sulfur; nitrogen; and unavoidable impurities will be present.
    Type: Grant
    Filed: February 1, 2001
    Date of Patent: April 1, 2003
    Assignees: Zentrum fuer Funktionswerkstoffe Gemeinnuetzige Gesellschaft mbH, Alcatel Kabel AG & Co.
    Inventors: Alexander Usoskin, Herbert Freyhardt, Friedrich Harten
  • Patent number: 6506439
    Abstract: An apparatus and process for applying a superconductive layer on an elongate substrate that includes moving the elongate substrate through a heating zone, applying a pulsed laser beam against a target, having a length, that is coated with superconductive material wherein particles of superconductive material are separated from the target and strike the elongate substrate with a plasma beam in the heating zone, and oscillating the pulsed laser beam across the target to provide a substantially uniform coating of superconductive material on the elongate substrate.
    Type: Grant
    Filed: November 22, 2000
    Date of Patent: January 14, 2003
    Assignee: Zentrum für Funktionswerkstoffe Gemeinnuetzige Gesellschaft mbH
    Inventors: Alexander Usoskin, Herbert Carl Freyhardt, Juergen Knoke
  • Publication number: 20020110708
    Abstract: A superconducting element comprising a high temperature superconducting film deposited on a stainless steel substrate that includes a composition of nickel; chromium; silicon; manganese; and iron. Optionally, carbon; phosphorous; sulfur; nitrogen; and unavoidable impurities will be present.
    Type: Application
    Filed: February 1, 2001
    Publication date: August 15, 2002
    Applicant: Zentrum fuer Funktionswerkstoffe Gemeinnuetzige Gesellschaft mbH, and Alcatel Kabel AG & CO.
    Inventors: Alexander Usoskin, Herbert Freyhardt, Friedrich Harten
  • Patent number: 5846911
    Abstract: A method of producing a superconductive coating (19) on an elongated substrate (12) is indicated, whereby the substrate (12) is drawn through a deposition chamber (1) in which it is also heated in a heating zone (2) and is coated with a superconducting material. To improve the current carrying capacity, the substrate (12) is coated with the superconducting material in a geometric form which differs from the use of the finished product in a way so that a compressive strain is created in the substrate plane of the superconductive coating (19) for the geometric form of the substrate (12) taking place when it is put to use.
    Type: Grant
    Filed: July 8, 1997
    Date of Patent: December 8, 1998
    Assignee: Alcatel Alsthom Compagnie Generale d'Electricite
    Inventors: Herbert C. Freyhardt, Alexander Usoskin, Francisco Garcia-Moreno