Patents by Inventor Alexandre Likhanskii

Alexandre Likhanskii has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11495434
    Abstract: Provided herein are approaches for in-situ plasma cleaning of ion beam optics. In one approach, a system includes a component (e.g., a beam-line component) of an ion implanter processing chamber. The system further includes a power supply for supplying a first voltage and first current to the component during a processing mode and a second voltage and second current to the component during a cleaning mode. The second voltage and current are applied to one or more conductive beam optics of the component, individually, to selectively generate plasma around one or more of the one or more conductive beam optics. The system may further include a flow controller for adjusting an injection rate of an etchant gas supplied to the beam-line component, and a vacuum pump for adjusting pressure of an environment of the beam-line component.
    Type: Grant
    Filed: September 28, 2020
    Date of Patent: November 8, 2022
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Kevin Anglin, William Davis Lee, Peter Kurunczi, Ryan Downey, Jay T. Scheuer, Alexandre Likhanskii, William M. Holber
  • Patent number: 11437215
    Abstract: Provided herein are approaches for decreasing particle generation in an electrostatic lens. In some embodiments, an ion implantation system may include an electrostatic lens including an entrance for receiving an ion beam and an exit for delivering the ion beam towards a target, the electrostatic lens including a first terminal electrode, a first suppression electrode, and a first ground electrode disposed along a first side of an ion beamline, wherein the first ground electrode is grounded and positioned adjacent the exit. The electrostatic lens may further include a second terminal electrode, a second suppression electrode, and a second ground electrode disposed along a second side of the ion beamline, wherein the second ground electrode is grounded and positioned adjacent the exit. The implantation system may further include a power supply operable to supply a voltage and a current to the electrostatic lens for controlling the ion beam.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: September 6, 2022
    Assignee: APPLIED Materials, Inc.
    Inventors: Alexandre Likhanskii, Antonella Cucchetti, Eric D. Hermanson, Frank Sinclair, Jay T. Scheuer, Robert C. Lindberg
  • Publication number: 20220139691
    Abstract: Provided herein are approaches for performing electrodynamic mass analysis with a radio frequency (RF) biased ion source to reduce ion beam energy spread. In some embodiments, a system may include an ion source including a power supply, the ion source operable to generate a plasma within a chamber housing, and an extraction power assembly including a first power supply and a second power supply electrically coupled with the chamber housing of the ion source, wherein the first power supply and the second power supply are operable to bias the chamber housing of the ion source with a time modulated voltage to extract an ion beam from the ion source. The system may further include an electrodynamic mass analysis (EDMA) assembly operable to receive the ion beam and perform mass analysis on the ion beam.
    Type: Application
    Filed: November 3, 2020
    Publication date: May 5, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Alexandre Likhanskii, Joseph C. Olson, Frank Sinclair, Peter F. Kurunczi
  • Publication number: 20210383995
    Abstract: An ion source including a chamber housing defining an ion source chamber and including an extraction plate on a front side thereof, the extraction plate having an extraction aperture formed therein, and a tubular cathode disposed within the ion source chamber and having an opening formed in a front half thereof nearest the extraction aperture, wherein a rear half of the tubular cathode furthest from the extraction aperture is closed.
    Type: Application
    Filed: August 20, 2021
    Publication date: December 9, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Bon-Woong Koo, Frank Sinclair, Alexandre Likhanskii, Svetlana Radovanov, Alexander Perel, Graham Wright, Jay T. Scheuer, Daniel Tieger, You Chia Li, Jay Johnson, Tseh-Jen Hsieh, Ronald Johnson
  • Patent number: 11127557
    Abstract: An ion source including a chamber housing defining an ion source chamber and including an extraction plate on a front side thereof, the extraction plate having an extraction aperture formed therein, and a tubular cathode disposed within the ion source chamber and having a slot formed in a front-facing semi-cylindrical portion thereof disposed in a confronting relationship with the extraction aperture, wherein a rear-facing semi-cylindrical portion of the tubular cathode directed away from the extraction aperture is closed.
    Type: Grant
    Filed: March 12, 2020
    Date of Patent: September 21, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Bon-Woong Koo, Frank Sinclair, Alexandre Likhanskii, Svetlana Radovanov, Alexander Perel, Graham Wright, Jay T. Scheuer, Daniel Tieger, You Chia Li, Jay Johnson, Tseh-Jen Hsieh, Ronald Johnson
  • Publication number: 20210287872
    Abstract: An ion source including a chamber housing defining an ion source chamber and including an extraction plate on a front side thereof, the extraction plate having an extraction aperture formed therein, and a tubular cathode disposed within the ion source chamber and having a slot formed in a front-facing semi-cylindrical portion thereof disposed in a confronting relationship with the extraction aperture, wherein a rear-facing semi-cylindrical portion of the tubular cathode directed away from the extraction aperture is closed.
    Type: Application
    Filed: March 12, 2020
    Publication date: September 16, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Bon-Woong Koo, Frank Sinclair, Alexandre Likhanskii, Svetlana Radovanov, Alexander Perel, Graham Wright, Jay T. Scheuer, Daniel Tieger, You Chia Li, Jay Johnson, Tseh-Jen Hsieh, Ronald Johnson
  • Publication number: 20210183609
    Abstract: Provided herein are approaches for decreasing particle generation in an electrostatic lens. In some embodiments, an ion implantation system may include an electrostatic lens including an entrance for receiving an ion beam and an exit for delivering the ion beam towards a target, the electrostatic lens including a first terminal electrode, a first suppression electrode, and a first ground electrode disposed along a first side of an ion beamline, wherein the first ground electrode is grounded and positioned adjacent the exit. The electrostatic lens may further include a second terminal electrode, a second suppression electrode, and a second ground electrode disposed along a second side of the ion beamline, wherein the second ground electrode is grounded and positioned adjacent the exit. The implantation system may further include a power supply operable to supply a voltage and a current to the electrostatic lens for controlling the ion beam.
    Type: Application
    Filed: December 13, 2019
    Publication date: June 17, 2021
    Applicant: APPLIED Materials, Inc.
    Inventors: Alexandre Likhanskii, Antonella Cucchetti, Eric D. Hermanson, Frank Sinclair, Jay T. Scheuer, Robert C. Lindberg
  • Patent number: 11037758
    Abstract: Provided herein are approaches for in-situ plasma cleaning of ion beam optics. In one approach, a system includes a component (e.g., a beam-line component) of an ion implanter processing chamber. The system further includes a power supply for supplying a first voltage and first current to the component during a processing mode and a second voltage and second current to the component during a cleaning mode. The second voltage and current are applied to one or more conductive beam optics of the component, individually, to selectively generate plasma around one or more of the one or more conductive beam optics. The system may further include a flow controller for adjusting an injection rate of an etchant gas supplied to the beam-line component, and a vacuum pump for adjusting pressure of an environment of the beam-line component.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: June 15, 2021
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Kevin Anglin, William Davis Lee, Peter Kurunczi, Ryan Downey, Jay T. Scheuer, Alexandre Likhanskii, William M. Holber
  • Publication number: 20210159043
    Abstract: An apparatus is provided. The apparatus may include a main chamber, an entrance tunnel, the entrance tunnel having an entrance axis extending into the main chamber; an exit tunnel, connected to the main chamber and defining an exit axis, wherein the entrance tunnel and the exit tunnel define a beam bend of less than 25 degrees therebetween, and an electrode assembly, disposed in the main chamber, and defining a beam path between the entrance tunnel and the exit tunnel. The electrode assembly may include an upper electrode, disposed on a first side of the beam path, and a plurality of lower electrodes, disposed on a second side of the beam path, the plurality of lower electrodes comprising at least three electrodes.
    Type: Application
    Filed: February 4, 2021
    Publication date: May 27, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Alexandre Likhanskii, Frank Sinclair, Shengwu Chang
  • Patent number: 11011343
    Abstract: Provided herein are approaches for increasing operational range of an electrostatic lens. An electrostatic lens of an ion implantation system may receive an ion beam from an ion source, the electrostatic lens including a first plurality of conductive beam optics disposed along one side of an ion beam line and a second plurality of conductive beam optics disposed along a second side of the ion beam line. The ion implantation system may further include a power supply in communication with the electrostatic lens, the power supply operable to supply a voltage and a current to at least one of the first and second plurality of conductive beam optics, wherein the voltage and the current deflects the ion beam at a beam deflection angle, and wherein the ion beam is accelerated and then decelerated within the electrostatic lens.
    Type: Grant
    Filed: August 16, 2019
    Date of Patent: May 18, 2021
    Assignee: APPLIED Materials, Inc.
    Inventors: Alexandre Likhanskii, Shengwu Chang, Frank Sinclair, Antonella Cucchetti, Eric D Hermanson, Christopher Campbell
  • Publication number: 20210134569
    Abstract: An ion source having an electrically isolated extraction plate is disclosed. By isolating the extraction plate, a different voltage can be applied to the extraction plate than to the body of the arc chamber. By applying a more positive voltage to the extraction plate, more efficient ion source operation with higher plasma density can be achieved. In this mode the plasma potential is increased, and the electrostatic sheath reduces losses of electrons to the chamber walls. By applying a more negative voltage, an ion rich sheath adjacent to the extraction aperture can be created. In this mode, conditioning and cleaning of the extraction plate is achieved via ion bombardment. Further, in certain embodiments, the voltage applied to the extraction plate can be pulsed to allow ion extraction and cleaning to occur simultaneously.
    Type: Application
    Filed: January 15, 2021
    Publication date: May 6, 2021
    Inventors: Svetlana B. Radovanov, Bon-Woong Koo, Alexandre Likhanskii
  • Publication number: 20210090845
    Abstract: Provided herein are approaches for controlling an ion beam using an electrostatic filter with curved electrodes. In some embodiments, a system may include an electrostatic filter receiving an ion beam, the filter including first and second electrodes disposed opposite sides of an ion beam line, each of the first and second electrodes having a central region between first and second ends, wherein a distance between a first outer surface of the first electrode and a second outer surface of the second electrode varies along an electrode length axis extending between the first and second ends. The system may further include a power supply in communication with the electrostatic filter, the power supply operable to supply a voltage and a current to the first and second electrodes, wherein the variable distance between the first and second outer surfaces causes the ion beam to converge or diverge.
    Type: Application
    Filed: September 19, 2019
    Publication date: March 25, 2021
    Applicant: APPLIED Materials, Inc.
    Inventors: Robert C. Lindberg, Alexandre Likhanskii, Wayne LeBlanc, Frank Sinclair, Svetlana Radovanov
  • Publication number: 20210066023
    Abstract: An apparatus for directional processing is disclosed. The apparatus includes a workpiece support and an ion source, having a plurality of walls. An extraction aperture is disposed on at least one of the plurality of walls. In certain embodiments, the plurality of walls defines a hollow region. The hollow region is located above the portion of the workpiece that is being processed, allowing the etching byproducts can be evacuated without depositing on the ion source. The shape of the hollow region may be modified to further reduce the amount of deposition on the hollow ion source. Additionally, a pump may be disposed within or above the hollow region to facilitate the removal of the etching byproducts. In other embodiments, the extraction aperture of the ion source may be disposed at a corner of the plasma chamber.
    Type: Application
    Filed: August 27, 2019
    Publication date: March 4, 2021
    Inventor: Alexandre Likhanskii
  • Patent number: 10937624
    Abstract: An apparatus is provided. The apparatus may include a main chamber, an entrance tunnel, the entrance tunnel having an entrance axis extending into the main chamber; an exit tunnel, connected to the main chamber and defining an exit axis, wherein the entrance tunnel and the exit tunnel define a beam bend of less than 25 degrees therebetween, and an electrode assembly, disposed in the main chamber, and defining a beam path between the entrance tunnel and the exit tunnel. The electrode assembly may include an upper electrode, disposed on a first side of the beam path, and a plurality of lower electrodes, disposed on a second side of the beam path, the plurality of lower electrodes comprising at least three electrodes.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: March 2, 2021
    Assignee: APPLIED Materials, Inc.
    Inventors: Alexandre Likhanskii, Frank Sinclair, Shengwu Chang
  • Patent number: 10923306
    Abstract: An indirectly heated cathode ion source having an electrically isolated extraction plate is disclosed. By isolating the extraction plate, a different voltage can be applied to the extraction plate than to the body of the arc chamber. By applying a more positive voltage to the extraction plate, more efficient ion source operation with higher plasma density can be achieved. In this mode the plasma potential is increased, and the electrostatic sheath reduces losses of electrons to the chamber walls. By applying a more negative voltage, an ion rich sheath adjacent to the extraction aperture can be created. In this mode, conditioning and cleaning of the extraction plate is achieved via ion bombardment. Further, in certain embodiments, the voltage applied to the extraction plate can be pulsed to allow ion extraction and cleaning to occur simultaneously.
    Type: Grant
    Filed: March 13, 2019
    Date of Patent: February 16, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Svetlana B. Radovanov, Bon-Woong Koo, Alexandre Likhanskii
  • Publication number: 20210020399
    Abstract: Provided herein are approaches for increasing operational range of an electrostatic lens. An electrostatic lens of an ion implantation system may receive an ion beam from an ion source, the electrostatic lens including a first plurality of conductive beam optics disposed along one side of an ion beam line and a second plurality of conductive beam optics disposed along a second side of the ion beam line. The ion implantation system may further include a power supply in communication with the electrostatic lens, the power supply operable to supply a voltage and a current to at least one of the first and second plurality of conductive beam optics, wherein the voltage and the current deflects the ion beam at a beam deflection angle, and wherein the ion beam is accelerated and then decelerated within the electrostatic lens.
    Type: Application
    Filed: August 16, 2019
    Publication date: January 21, 2021
    Applicant: APPLIED Materials, Inc.
    Inventors: Alexandre Likhanskii, Shengwu Chang, Frank Sinclair, Antonella Cucchetti, Eric D Hermanson, Christopher Campbell
  • Publication number: 20210013001
    Abstract: Provided herein are approaches for in-situ plasma cleaning of ion beam optics. In one approach, a system includes a component (e.g., a beam-line component) of an ion implanter processing chamber. The system further includes a power supply for supplying a first voltage and first current to the component during a processing mode and a second voltage and second current to the component during a cleaning mode. The second voltage and current are applied to one or more conductive beam optics of the component, individually, to selectively generate plasma around one or more of the one or more conductive beam optics. The system may further include a flow controller for adjusting an injection rate of an etchant gas supplied to the beam-line component, and a vacuum pump for adjusting pressure of an environment of the beam-line component.
    Type: Application
    Filed: September 28, 2020
    Publication date: January 14, 2021
    Applicant: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Kevin Anglin, William Davis Lee, Peter Kurunczi, Ryan Downey, Jay T. Scheuer, Alexandre Likhanskii, William M. Holber
  • Patent number: 10886098
    Abstract: An apparatus may include a main chamber, an entrance tunnel, having an entrance axis extending into the main chamber, and an exit tunnel, connected to the main chamber and defining an exit axis, wherein the entrance tunnel and the exit tunnel define a beam bend of less than 25 degrees therebetween. The apparatus may include an electrode assembly, disposed in the main chamber, on a lower side of the exit tunnel; and a catch assembly, disposed within the main chamber, in a line of sight from an exterior aperture of the exit tunnel.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: January 5, 2021
    Assignee: APPLIED Materials, Inc.
    Inventors: Alexandre Likhanskii, Frank Sinclair, Shengwu Chang, Eric D. Hermanson, Nevin H. Clay
  • Patent number: 10804068
    Abstract: An apparatus is provided. The apparatus may include a main chamber; an entrance tunnel having a propagation axis extending into the main chamber along a first direction; an exit tunnel, connected to the main chamber and defining an exit direction. The entrance tunnel and the exit tunnel may define a beam bend of at least 30 degrees therebetween. The apparatus may include an electrode assembly, disposed in the main chamber, and defining a beam path between the entrance tunnel and the exit aperture, wherein the electrode assembly comprises a lower electrode, disposed on a first side of the beam path, and a plurality of electrodes, disposed on a second side of the beam path, the plurality of electrodes comprising at least five electrodes.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: October 13, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Alexandre Likhanskii, Frank Sinclair, Shengwu Chang
  • Patent number: D956005
    Type: Grant
    Filed: September 19, 2019
    Date of Patent: June 28, 2022
    Assignee: APPLIED Materials, Inc.
    Inventors: Robert C. Lindberg, Alexandre Likhanskii, Wayne LeBlanc, Frank Sinclair, Svetlana Radovanov