Patents by Inventor Alexandru S. Biris

Alexandru S. Biris has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8692716
    Abstract: A method of fabricating an antenna. In one embodiment, the method includes the steps of providing a substrate treated with a plasma treatment, providing a nanoparticle ink comprising nanoparticles, painting the nanoparticle ink on the substrate to form an antenna member in which the nanoparticles are connected, determining a feed point of the antenna member, and attaching an feeding port onto the substrate at the feed point to establish a contact between the feeding port and the antenna member.
    Type: Grant
    Filed: February 16, 2009
    Date of Patent: April 8, 2014
    Assignee: Board of Trustees of the University of Arkansas
    Inventors: Alexandru S. Biris, Hussain Al-Rizzo, Taha Elwi, Daniel Rucker
  • Publication number: 20130304229
    Abstract: A structure of, and a method of producing, a biocompatible structure for bone and tissue regeneration are disclosed. The method includes dissolving a polyurethane polymer in methanol, adding hydroxyapatite (HAP) nanoparticles to form a uniformly distributed mixture, applying the mixture to a polytetrafluoroethylene (PTFE) surface to form a polymer film, cutting the polymer film into strips, stacking the strips with layers of bone particles disposed therebetween, coating the stacked strips and layers by the mixture and allowing it to dry, adding bone particles to the coating, and plasma treating the structure to form the biocompatible structure. A weight percentage of the HAP nanoparticles to the polymer is about 5-50% such that a resorption rate of the biocompatible structure substantially matches a rate of tissue generation in the biocompatible structure.
    Type: Application
    Filed: July 22, 2013
    Publication date: November 14, 2013
    Applicant: Board of Trustees of the University of Arkansas
    Inventor: Alexandru S. Biris
  • Publication number: 20130298399
    Abstract: A method of making an electrodynamic array of conductive nanomaterial electrodes calls for a liquid solution containing nanomaterials to be deposited as an array of conductive electrodes on a substrate, including rigid or flexible substrates such as fabrics, and opaque or transparent substrates. The nanomaterial electrodes may also be grown in situ. The nanomaterials may include carbon nanomaterials, other organic or inorganic nanomaterials or mixtures.
    Type: Application
    Filed: July 22, 2013
    Publication date: November 14, 2013
    Inventors: Steven Trigwell, Alexandru S. Biris, Carlos I. Calle
  • Patent number: 8576394
    Abstract: A method of fabricating a surface enhanced Raman scattering (SERS) substrate. In one embodiment, the method has the steps of simultaneously evaporating a metal at a first evaporation rate and a polymer at a second evaporation rate different from the first evaporation rate, to form a nanocomposite of the metal and the polymer, depositing the nanocomposite onto a substrate, and applying an etching process to the deposited nanocomposite on the substrate to remove the polymer material, thereby forming an SERS substrate.
    Type: Grant
    Filed: August 5, 2011
    Date of Patent: November 5, 2013
    Assignee: Board of Trustees of the University of Arkansas
    Inventors: Alexandru S. Biris, Abhijit Biswas, Ilker S. Bayer, Lloyd A. Bumm
  • Patent number: 8518123
    Abstract: A system and method for the repair of damaged tissue and bones, congenitally missing tissue/cosmetic reconstruction of tissue is described. The system has a layered porous structure with a sufficiently large area of exposed pores to promote neo-vascularization as well as bone and tissue formation. The disclosed porous implant system can contain bioactive agents necessary for rapid tissue formation and keep ingrowth of unwanted tissue out of the implant surgical site. The implant can be reinforced with an additional, stronger polymer layer and/or may include an endoskeleton or exoskeleton for dimensional stability.
    Type: Grant
    Filed: September 11, 2006
    Date of Patent: August 27, 2013
    Assignee: Board of Trustees of the University of Arkansas
    Inventors: Peder Jensen, Alexandru S. Biris
  • Patent number: 8518420
    Abstract: A method for growing bone cells. In one aspect, the present invention provides a method for growing bone cells, comprising the steps of (a) anodizing a titanium substrate to form an array of titanium dioxide nanotubes on a surface of the titanium substrate, (b) subjecting the anodized titanium substrate to a radio frequency plasma discharge to chemically modify the array of titanium dioxide nanotubes formed on the surface of the titanium substrate, (c) seeding bone cells onto the surface of the titanium substrate that has an array of titanium dioxide nanotubes thereon after the subjecting step, and (d) incubating the seeded bone cells for a period of time effective for the cells to grow and proliferate.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: August 27, 2013
    Assignee: Board of Trustees of the Universtiy of Arkansas
    Inventor: Alexandru S. Biris
  • Patent number: 8513531
    Abstract: An electrodynamic array of conductive nanomaterial electrodes and a method of making such an electrodynamic array. In one embodiment, a liquid solution containing nanomaterials is deposited as an array of conductive electrodes on a substrate, including rigid or flexible substrates such as fabrics, and opaque or transparent substrates. The nanomaterial electrodes may also be grown in situ. The nanomaterials may include carbon nanomaterials, other organic or inorganic nanomaterials or mixtures.
    Type: Grant
    Filed: July 15, 2010
    Date of Patent: August 20, 2013
    Assignee: The Board of Trustees of the University of Arkansas
    Inventors: Steven Trigwell, Alexandru S. Biris, Carlos I. Calle
  • Publication number: 20130064863
    Abstract: One aspect of the present invention relates to a method of synthesizing a multicomponent and biocompatible nanocomposite material, which includes: synthesizing a gold/hydroxyapatite (Au/HA) catalyst; distributing the Au/HA catalyst into a thin film; and heating the thin film in a reactor with a carbon source gas to perform radio frequency chemical vapor deposition (RF-CVD) to form the nanocomposite material, where the nanocomposite material includes a graphene structure and Au/HA nanoparticles formed by the Au/HA catalyst and distributed within the graphene structure. In another aspect, a multicomponent and biocompatible nanocomposite material includes: a graphene structure formed with a plurality of graphene layers and Au/HA nanoparticles distributed within the graphene structure. The nanocomposite material is formed by heating an Au/HA catalyst thin film with a carbon source gas to perform radio frequency chemical vapor deposition (RF-CVD).
    Type: Application
    Filed: August 30, 2012
    Publication date: March 14, 2013
    Applicant: BOARD OF TRUSTEES OF THE UNIVERSITY OF ARKANSAS
    Inventors: Alexandru S. Biris, Alexandru R. Biris
  • Patent number: 8337951
    Abstract: Certain aspects of the present disclosure are directed to a method of forming a superhydrophobic surface. The method includes: preparing a surface of a substrate of a first material; modifying the surface through an etching process to generate a plurality of nucleation sites in an array; forming, by using glancing angle deposition, a plurality of nano-rods of a second material and each at a respective one of the plurality of nucleation sites in the array; and depositing a conformal coating on the plurality of nano-rods.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: December 25, 2012
    Assignee: Board of Trustees of the University of Arkansas
    Inventors: Alexandru S. Biris, Ganesh K. Kannarpady
  • Patent number: 8304302
    Abstract: A photovoltaic device and methods for forming the same. In one embodiment, the photovoltaic device has a silicon substrate, and a film comprising a plurality of single wall carbon nanotubes disposed on the silicon substrate, wherein the plurality of single wall carbon nanotubes forms a plurality of heterojunctions with the silicon in the substrate.
    Type: Grant
    Filed: April 1, 2010
    Date of Patent: November 6, 2012
    Assignee: Board of Trustees of the University of Arkansas
    Inventors: Alexandru S. Biris, Zhongrui Li
  • Publication number: 20120244224
    Abstract: A method of inducing mineralization in a bone cell is described. The method comprises contacting a bone cell with a composition comprising nanoparticles. The nanoparticles can be single-walled carbon nanotubes, hydroxyapatite nanoparticles, TiO2 nanoparticles or silver nanoparticles. The bone cell can be an osteoblast cell. A method for increasing bone mass, bone healing or bone formation is also described which comprises administering to a subject in need thereof an effective amount of a composition comprising nanoparticles. The subject can suffer from a bone disease such as osteoporosis. The subject can suffer from a bone fracture and the method can comprise contacting bone cells near the bone fracture site with the composition. The composition can further comprise a pharmaceutically acceptable carrier.
    Type: Application
    Filed: March 21, 2012
    Publication date: September 27, 2012
    Applicant: BOARD OF TRUSTEES OF THE UNIVERSITY OF ARKANSAS
    Inventors: Alexandru S. BIRIS, Daniel CASCIANO, Meena Waleed MAHMOOD
  • Publication number: 20120233725
    Abstract: A method of increasing the probability and rate of seed germination, increasing vegetative biomass, and increasing water uptake in seeds, in which a seed is introduced to an effective concentration of carbon nanomaterial. The effective concentration of carbon nanomaterial 100 is 10-200 ?g/mL.
    Type: Application
    Filed: November 15, 2010
    Publication date: September 13, 2012
    Inventors: Mariya V. Khodakovskaya, Alexandru S. Biris
  • Patent number: 8153942
    Abstract: An apparatus and method for synthesizing nanostructures in a reactor having a reaction zone and a conductive susceptor positioned in the reaction zone. In one embodiment, the method has the steps of placing a semiconductor plate having a film of a catalyst in the reaction zone such that the semiconductor plate is supported by the conductive susceptor; transporting a gas mixture having a feedstock gas having hydrocarbon and a carrier gas into the reaction zone of the chamber; inductively heating the reaction zone; and regulating the heating so that the temperature of the conductive susceptor increases from a first temperature to a second temperature when the gas mixture is introduced into the cavity of the chamber to allow nanostructures to be grown from the interaction of the gas mixture with the film of a catalyst of the semiconductor plate.
    Type: Grant
    Filed: February 16, 2009
    Date of Patent: April 10, 2012
    Assignee: Board of Trustees of the University of Arkansas
    Inventors: Alexandru S. Biris, Enkeleda Dervishi, Yang Xu, Zhongrui Li
  • Publication number: 20110285992
    Abstract: A method of fabricating a surface enhanced Raman scattering (SERS) substrate. In one embodiment, the method has the steps of simultaneously evaporating a metal at a first evaporation rate and a polymer at a second evaporation rate different from the first evaporation rate, to form a nanocomposite of the metal and the polymer, depositing the nanocomposite onto a substrate, and applying an etching process to the deposited nanocomposite on the substrate to remove the polymer material, thereby forming an SERS substrate.
    Type: Application
    Filed: August 5, 2011
    Publication date: November 24, 2011
    Applicant: BOARD OF TRUSTEES OF THE UNIVERSITY OF ARKANSAS
    Inventors: Alexandru S. Biris, Abhijit Biswas, Ilker S. Bayer, Lloyd A. Bumm
  • Publication number: 20110236495
    Abstract: The present invention encompasses a composition capable of delivering and expressing a nucleic acid encoding UDP-Glucuronosyltransferases, p53 or a combination thereof into a cell, and methods for treating tumors.
    Type: Application
    Filed: March 28, 2011
    Publication date: September 29, 2011
    Applicant: BOARD OF TRUSTEES OF THE UNIVERSITY OF ARKANSAS
    Inventors: Anna Radominska-Pandya, Alexandru S. Biris
  • Publication number: 20110237862
    Abstract: A magnetic oxide-quantum dot nanocomposite and methods of synthesizing it. In one embodiment, the magnetic oxide-quantum dot nanocomposite has at least one magnetic oxide nanoparticle coated with a silica (SiO2) shell and terminated with at least one thiol group (—SH), and at least one CdSe/ZnS quantum dot linked with the at least one SiO2-coated magnetic oxide nanoparticle via the at least one thiol group. In one embodiment, the at least one magnetic oxide nanoparticle comprises at least one iron oxide (Fe3O4) nanoparticle.
    Type: Application
    Filed: March 25, 2011
    Publication date: September 29, 2011
    Applicant: BOARD OF TRUSTEES OF THE UNIVERSITY OF ARKANSAS
    Inventors: Alexandru S. Biris, Yang Xu, Daoyuan Wang
  • Publication number: 20110236435
    Abstract: A method for growing bone cells. In one aspect, the present invention provides a method for growing bone cells, comprising the steps of (a) anodizing a titanium substrate to form an array of titanium dioxide nanotubes on a surface of the titanium substrate, (b) subjecting the anodized titanium substrate to a radio frequency plasma discharge to chemically modify the array of titanium dioxide nanotubes formed on the surface of the titanium substrate, (c) seeding bone cells onto the surface of the titanium substrate that has an array of titanium dioxide nanotubes thereon after the subjecting step, and (d) incubating the seeded bone cells for a period of time effective for the cells to grow and proliferate.
    Type: Application
    Filed: March 25, 2011
    Publication date: September 29, 2011
    Applicant: BOARD OF TRUSTEES OF THE UNIVERSITY OF ARKANSAS
    Inventor: Alexandru S. Biris
  • Patent number: 8013992
    Abstract: A method of fabricating a surface enhanced Raman scattering (SERS) substrate. In one embodiment, the method has the steps of simultaneously evaporating a metal at a first evaporation rate and a polymer at a second evaporation rate different from the first evaporation rate, to form a nanocomposite of the metal and the polymer, depositing the nanocomposite onto a substrate, and applying an etching process to the deposited nanocomposite on the substrate to remove the polymer material, thereby forming an SERS substrate.
    Type: Grant
    Filed: December 17, 2008
    Date of Patent: September 6, 2011
    Assignee: Board of Trustees of the University of Arkansas
    Inventors: Alexandru S. Biris, Abhijit Biswas, Ilker S. Bayer, Lloyd A. Bumm
  • Publication number: 20110024792
    Abstract: A photovoltaic device and methods for forming the same. In one embodiment, the photovoltaic device has a silicon substrate, and a film comprising a plurality of single wall carbon nanotubes disposed on the silicon substrate, wherein the plurality of single wall carbon nanotubes forms a plurality of heterojunctions with the silicon in the substrate.
    Type: Application
    Filed: April 1, 2010
    Publication date: February 3, 2011
    Applicant: BOARD OF TRUSTEES OF THE UNIVERSITY OF ARKANSAS
    Inventors: Alexandru S. Biris, Zhongrui Li
  • Publication number: 20110024697
    Abstract: The present invention in one aspect relates to a method for producing carbon nanotubes. In one embodiment, the method includes the steps of forming a substrate, depositing a loading amount of catalyst including iron and cobalt nanoparticles on the surfaces of the substrate, and heating the catalyst deposited on the substrate in a radio frequency reactor having a flow of a methane carbon source at a predetermined temperature so as to cause the growth of carbon nanotubes on the substrate.
    Type: Application
    Filed: April 1, 2010
    Publication date: February 3, 2011
    Applicant: BOARD OF TRUSTEES OF THE UNIVERSITY OF ARKANSAS
    Inventors: Alexandru S. Biris, Yang Xu, Dervishi Enkeleda, Li Zhongrui