Patents by Inventor Alexey Krasnov

Alexey Krasnov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10222923
    Abstract: Certain example embodiments relate to capacitive touch panels. First and second glass substrates are substantially parallel and spaced apart from one another. At least one multi-layer transparent conductive coating (TCC) is patterned into electrodes and located between the first and second substrates. The TCC(s) include(s) at least one conductive layer including silver, a dielectric layer including zinc oxide under and directly contacting the conductive layer including silver, and a dielectric layer(s) including tin oxide or silicon nitride over the conductive layer including silver. Processing circuitry electrically connects to the electrodes and measures an aspect of the electrodes' capacitance. A laminate material is located between the first and second glass substrates. The TCC(s), when blanket deposited, may have a visible transmission of at least 88%, a sheet resistances of no more than 10 ohms per square, and a haze of no more than 0.5%. Mutual and self-capacitance designs are disclosed.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: March 5, 2019
    Assignee: Guardian Glass, LLC
    Inventors: Vijayen S. Veerasamy, Jason Blush, Eric W. Akkashian, Willem Den Boer, Alexey Krasnov
  • Patent number: 10216347
    Abstract: A multi-layer conductive coating is substantially transparent to visible light, contains at least one conductive layer comprising silver that is sandwiched between at least a pair of dielectric layers, and may be used as an electrode and/or conductive trace in a capacitive touch panel. The multi-layer conductive coating may contain a dielectric layer(s), and may be used in applications such as capacitive touch panels for controlling showers, appliances, vending machines, electronics, electronic devices, and/or the like. In certain example embodiments, different electrodes of the touch panel may have different resistance, with the respective silver-based structures of various electrodes being different from one another to provide different resistance for different electrodes.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: February 26, 2019
    Assignee: Guardian Glass, LLC
    Inventors: Alexey Krasnov, Willem Den Boer, Jason Blush, Eric W. Akkashian
  • Patent number: 10207951
    Abstract: Certain embodiments of this invention relates to a coated article including a low-emissivity (low-E) coating supported by a substrate (e.g., glass substrate) for use in a window, where the low-E coating is exposed to ultraviolet (UV) radiation in order to improve the coating's and thus the coated article's electrical, optical and/or thermal blocking properties. The low-E coating includes at least one infrared (IR) reflecting layer of or including silver which is located on and directly contacting a contact/seed layer of or including metal oxide such as zinc oxide and/or zinc stannate. Exposing the low-E coating to UV radiation, e.g., emitted from a UV lamp(s) and/or UV laser(s), allows for selective heating of the contact/seed layer which in turn transfers the heat energy to the adjacent IR reflecting layer. This heating of the silver inclusive layer improves the silver layer's electrical, optical and/or thermal blocking properties.
    Type: Grant
    Filed: February 27, 2018
    Date of Patent: February 19, 2019
    Assignee: Guardian Glass, LLC
    Inventors: Alexey Krasnov, Muhammad Imran, Willem Den Boer, Kevin O'Connor
  • Publication number: 20190039940
    Abstract: A laser beam(s) is used to cut heat strengthened (e.g., thermally tempered) glass. The heat strengthened glass may be coated in certain example embodiments, such as with a multi-layer low-emissivity (low-E) coating and/or an antireflective (AR) coating. It has been found that focusing the laser beam(s) in a tensile stress zone, in a central area of the heat strengthened glass (as opposed to in a compression stress zone), during a cutting process provides for improved cutting characteristics to avoid and/or reduce fragmenting of the glass and to provide for a clean cut edge. The wavelength emitted from the laser may be tailored based on spectral characteristics of the coating.
    Type: Application
    Filed: August 2, 2017
    Publication date: February 7, 2019
    Inventors: Barry B. CORDEN, Alexey KRASNOV
  • Publication number: 20190012021
    Abstract: Certain example embodiments relate to capacitive touch panels. First and second glass substrates are substantially parallel and spaced apart from one another. At least one multi-layer transparent conductive coating (TCC) is patterned into electrodes and located between the first and second substrates. The TCC(s) include(s) at least one conductive layer including silver, a dielectric layer including zinc oxide under and directly contacting the conductive layer including silver, and a dielectric layer(s) including tin oxide or silicon nitride over the conductive layer including silver. Processing circuitry electrically connects to the electrodes and measures an aspect of the electrodes' capacitance. A laminate material is located between the first and second glass substrates. The TCC(s), when blanket deposited, may have a visible transmission of at least 88%, a sheet resistances of no more than 10 ohms per square, and a haze of no more than 0.5%. Mutual and self-capacitance designs are disclosed.
    Type: Application
    Filed: September 14, 2018
    Publication date: January 10, 2019
    Inventors: Vijayen S. VEERASAMY, Jason BLUSH, Eric W. AKKASHIAN, Willem DEN BOER, Alexey KRASNOV
  • Publication number: 20180364839
    Abstract: A multi-layer conductive coating is substantially transparent to visible light, contains at least one conductive layer comprising silver that is sandwiched between at least a pair of dielectric layers, and may be used as an electrode and/or conductive trace in a capacitive touch panel. The multi-layer conductive coating may contain a dielectric layer of or including zirconium oxide (e.g., ZrO2) and/or silicon nitride, and may be used in applications such as capacitive touch panels for controlling showers, appliances, vending machines, electronics, electronic devices, and/or the like. The touch panel may further include a functional film(s) which may be one or more of: an index-matching film, an antiglare film, an anti-fingerprint film, and anti-microbial film, a scratch resistant film, and/or an antireflective (AR) film.
    Type: Application
    Filed: August 23, 2018
    Publication date: December 20, 2018
    Inventors: Willem DEN BOER, Alexey KRASNOV, Jason BLUSH, Eric W. AKKASHIAN
  • Publication number: 20180356346
    Abstract: A method and/or system is provided for detecting inclusions (e.g., nickel sulfide based inclusions/defects) in soda-lime-silica based glass, such as float glass. In certain example instances, during and/or after the glass-making process, following the stage in the float process where the glass sheet is formed and floated on a molten material (e.g., tin bath) and cooled or allowed to cool such as via an annealing lehr, visible light from an intense visible light source(s) is directed at the resulting glass and thermal imaging is used to detect inclusions based on a temperature difference between the inclusions and surrounding float glass. In another example embodiment, inclusion detection may be performed without exposure of the glass to light from a light source(s).
    Type: Application
    Filed: June 7, 2017
    Publication date: December 13, 2018
    Inventors: Alexey KRASNOV, Xuequn HU, Robert BROADWATER, Greg GAUDET
  • Patent number: 10134379
    Abstract: Certain example embodiments relate to an acoustic wall assembly that uses active and/or passive sound reverberation to achieve noise-disruptive functionality, and/or a method of making and/or using the same. With the active approach, sound waves in a given frequency range are detected by a sound masking circuit. Responsive to detection of such sound waves, an air pump (e.g., speaker) is used to pump air in the wall assembly to actively mask the detected sound waves via reverberation and/or the like. The wall assembly may include one, two, or more walls, and the walls may be partial or full walls. With the passive approach, sound waves in a given frequency range are disrupted via features (e.g., holes, slits, etc.) formed in and/or on a wall itself. These techniques may be used together or separately, in different example embodiments.
    Type: Grant
    Filed: March 1, 2016
    Date of Patent: November 20, 2018
    Assignee: Guardian Glass, LLC
    Inventors: Alexey Krasnov, Barry B. Corden
  • Publication number: 20180312429
    Abstract: Certain example embodiments relate to coated articles with sequentially activated low-E coatings, and/or methods of making the same. In certain example embodiments, one or more infrared reflecting layers is/are activated via a non-equilibrium preconditioning activation that uses photons with specific frequencies/frequency ranges, followed by a more equilibrium thermal activation. The preconditioning activation aids in rearranging the silver atoms to energetically favorable positions, while helping to avoid their unwanted agglomeration. The more equilibrium thermal stage of activation aids in aligning the chemical potentials of the layers of the stack and in further densification of the preconditioned silver layer. Doing so, in turn, helps to reduce the likelihood of stresses building-up in the coating, the formation of point and dimensional defects, other unwanted efficiency-reducing phenomena, and/or the like.
    Type: Application
    Filed: June 28, 2018
    Publication date: November 1, 2018
    Inventors: Alexey KRASNOV, Herbert LAGE, Jean-Marc LEMMER
  • Patent number: 10088967
    Abstract: A projected capacitive touch panel, including a substrate, a silver-inclusive transparent conductive coating which forms a plurality of row electrodes, a plurality of column electrodes, and a plurality of conductive traces, and a signal processor which sequentially measures a capacitance between each of row electrodes and an adjacent column electrode. The row electrodes, the plurality of column electrodes, and the plurality of traces are on a plane substantially parallel to the substrate. Each of the row electrodes is electrically connected to the signal processor by one of the plurality of conductive traces. The plurality of traces are at least partially substantially parallel to the column electrodes.
    Type: Grant
    Filed: April 12, 2018
    Date of Patent: October 2, 2018
    Assignee: Guardian Glass, LLC
    Inventors: Willem Den Boer, Alexey Krasnov
  • Publication number: 20180268836
    Abstract: Certain example embodiments relate to speech privacy systems and/or associated methods. The techniques described herein disrupt the intelligibility of the perceived speech by, for example, superimposing onto an original speech signal a masking replica of the original speech signal in which portions of it are smeared by a time delay and/or amplitude adjustment, with the time delays and/or amplitude adjustments oscillating over time. In certain example embodiments, smearing of the original signal may be generated in frequency ranges corresponding to formants, consonant sounds, phonemes, and/or other related or non-related information-carrying building blocks of speech. Additionally, or in the alternative, annoying reverberations particular to a room or area in low frequency ranges may be “cut out” of the replica signal, without increasing or substantially increasing perceived loudness.
    Type: Application
    Filed: March 15, 2017
    Publication date: September 20, 2018
    Inventor: Alexey KRASNOV
  • Publication number: 20180268840
    Abstract: Certain example embodiments relate to speech privacy systems and/or associated methods. The techniques described herein disrupt the intelligibility of the perceived speech by, for example, superimposing onto an original speech signal a masking replica of the original speech signal in which portions of it are smeared by a time delay and/or amplitude adjustment, with the time delays and/or amplitude adjustments oscillating over time. In certain example embodiments, smearing of the original signal may be generated in frequency ranges corresponding to formants, consonant sounds, phonemes, and/or other related or non-related information-carrying building blocks of speech. Additionally, or in the alternative, annoying reverberations particular to a room or area in low frequency ranges may be “cut out” of the replica signal, without increasing or substantially increasing perceived loudness.
    Type: Application
    Filed: March 15, 2017
    Publication date: September 20, 2018
    Inventor: Alexey KRASNOV
  • Publication number: 20180268835
    Abstract: Certain example embodiments relate to speech privacy systems and/or associated methods. The techniques described herein disrupt the intelligibility of the perceived speech by, for example, superimposing onto an original speech signal a masking replica of the original speech signal in which portions of it are smeared by a time delay and/or amplitude adjustment, with the time delays and/or amplitude adjustments oscillating over time. In certain example embodiments, smearing of the original signal may be generated in frequency ranges corresponding to formants, consonant sounds, phonemes, and/or other related or non-related information-carrying building blocks of speech. Additionally, or in the alternative, annoying reverberations particular to a room or area in low frequency ranges may be “cut out” of the replica signal, without increasing or substantially increasing perceived loudness.
    Type: Application
    Filed: March 15, 2017
    Publication date: September 20, 2018
    Inventor: Alexey KRASNOV
  • Publication number: 20180268834
    Abstract: Certain example embodiments relate to speech privacy systems and/or associated methods. The techniques described herein disrupt the intelligibility of the perceived speech by, for example, superimposing onto an original speech signal a masking replica of the original speech signal in which portions of it are smeared by a time delay and/or amplitude adjustment, with the time delays and/or amplitude adjustments oscillating over time. In certain example embodiments, smearing of the original signal may be generated in frequency ranges corresponding to formants, consonant sounds, phonemes, and/or other related or non-related information-carrying building blocks of speech. Additionally, or in the alternative, annoying reverberations particular to a room or area in low frequency ranges may be “cut out” of the replica signal, without increasing or substantially increasing perceived loudness.
    Type: Application
    Filed: March 15, 2017
    Publication date: September 20, 2018
    Inventor: Alexey KRASNOV
  • Patent number: 10078409
    Abstract: Certain example embodiments relate to capacitive touch panels. First and second glass substrates are substantially parallel and spaced apart from one another. At least one multi-layer transparent conductive coating (TCC) is patterned into electrodes and located between the first and second substrates. The TCC(s) include(s) at least one conductive layer including silver, a dielectric layer including zinc oxide under and directly contacting the conductive layer including silver, and a dielectric layer(s) including tin oxide or silicon nitride over the conductive layer including silver. Processing circuitry electrically connects to the electrodes and measures an aspect of the electrodes' capacitance. A laminate material is located between the first and second glass substrates. The TCC(s), when blanket deposited, may have a visible transmission of at least 88%, a sheet resistances of no more than 10 ohms per square, and a haze of no more than 0.5%. Mutual and self-capacitance designs are disclosed.
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: September 18, 2018
    Assignee: Guardian Glass, LLC
    Inventors: Vijayen S. Veerasamy, Jason Blush, Eric W. Akkashian, Willem Den Boer, Alexey Krasnov
  • Patent number: 10073576
    Abstract: A multi-layer conductive coating is substantially transparent to visible light, contains at least one conductive layer comprising silver that is sandwiched between at least a pair of dielectric layers, and may be used as an electrode and/or conductive trace in a capacitive touch panel. The multi-layer conductive coating may contain a dielectric layer of or including zirconium oxide (e.g., ZrO2) and/or silicon nitride, and may be used in applications such as capacitive touch panels for controlling showers, appliances, vending machines, electronics, electronic devices, and/or the like. The touch panel may further include a functional film(s) which may be one or more of: an index-matching film, an antiglare film, an anti-fingerprint film, and anti-microbial film, a scratch resistant film, and/or an antireflective (AR) film.
    Type: Grant
    Filed: March 19, 2018
    Date of Patent: September 11, 2018
    Assignee: Guardian Glass, LLC
    Inventors: Willem Den Boer, Alexey Krasnov, Jason Blush, Eric W. Akkashian
  • Publication number: 20180232079
    Abstract: A projected capacitive touch panel, including a substrate, a silver-inclusive transparent conductive coating which forms a plurality of row electrodes, a plurality of column electrodes, and a plurality of conductive traces, and a signal processor which sequentially measures a capacitance between each of row electrodes and an adjacent column electrode. The row electrodes, the plurality of column electrodes, and the plurality of traces are on a plane substantially parallel to the substrate. Each of the row electrodes is electrically connected to the signal processor by one of the plurality of conductive traces. The plurality of traces are at least partially substantially parallel to the column electrodes.
    Type: Application
    Filed: April 12, 2018
    Publication date: August 16, 2018
    Inventors: Willem DEN BOER, Alexey KRASNOV
  • Publication number: 20180210579
    Abstract: A multi-layer conductive coating is substantially transparent to visible light, contains at least one conductive layer comprising silver that is sandwiched between at least a pair of dielectric layers, and may be used as an electrode and/or conductive trace in a capacitive touch panel. The multi-layer conductive coating may contain a dielectric layer of or including zirconium oxide (e.g., ZrO2) and/or silicon nitride, and may be used in applications such as capacitive touch panels for controlling showers, appliances, vending machines, electronics, electronic devices, and/or the like. The touch panel may further include a functional film(s) which may be one or more of: an index-matching film, an antiglare film, an anti-fingerprint film, and anti-microbial film, a scratch resistant film, and/or an antireflective (AR) film.
    Type: Application
    Filed: March 19, 2018
    Publication date: July 26, 2018
    Inventors: Willem DEN BOER, Alexey KRASNOV, Jason BLUSH, Eric W. AKKASHIAN
  • Publication number: 20180186692
    Abstract: Certain embodiments of this invention relates to a coated article including a low-emissivity (low-E) coating supported by a substrate (e.g., glass substrate) for use in a window, where the low-E coating is exposed to ultraviolet (UV) radiation in order to improve the coating's and thus the coated article's electrical, optical and/or thermal blocking properties. The low-E coating includes at least one infrared (IR) reflecting layer of or including silver which is located on and directly contacting a contact/seed layer of or including metal oxide such as zinc oxide and/or zinc stannate. Exposing the low-E coating to UV radiation, e.g., emitted from a UV lamp(s) and/or UV laser(s), allows for selective heating of the contact/seed layer which in turn transfers the heat energy to the adjacent IR reflecting layer. This heating of the silver inclusive layer improves the silver layer's electrical, optical and/or thermal blocking properties.
    Type: Application
    Filed: February 27, 2018
    Publication date: July 5, 2018
    Inventors: Alexey KRASNOV, Muhammad IMRAN, Willem DEN BOER, Kevin O'CONNOR
  • Patent number: 10011524
    Abstract: Certain example embodiments relate to coated articles with sequentially activated low-E coatings, and/or methods of making the same. In certain example embodiments, one or more infrared reflecting layers is/are activated via a non-equilibrium preconditioning activation that uses photons with specific frequencies/frequency ranges, followed by a more equilibrium thermal activation. The preconditioning activation aids in rearranging the silver atoms to energetically favorable positions, while helping to avoid their unwanted agglomeration. The more equilibrium thermal stage of activation aids in aligning the chemical potentials of the layers of the stack and in further densification of the preconditioned silver layer. Doing so, in turn, helps to reduce the likelihood of stresses building-up in the coating, the formation of point and dimensional defects, other unwanted efficiency-reducing phenomena, and/or the like.
    Type: Grant
    Filed: June 19, 2015
    Date of Patent: July 3, 2018
    Assignees: Guardian Glass, LLC, Centre Luxembourgeois de Recherches Pour le Verre et la Ceramique (C.R.V.C.) S.a.r.l.
    Inventors: Alexey Krasnov, Herbert Lage, Jean-Marc Lemmer