Patents by Inventor Alexey Krasnov

Alexey Krasnov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180181237
    Abstract: Certain example embodiments relate to capacitive touch panels. First and second glass substrates are substantially parallel and spaced apart from one another. At least one multi-layer transparent conductive coating (TCC) is patterned into electrodes and located between the first and second substrates. The TCC(s) include(s) at least one conductive layer including silver, a dielectric layer including zinc oxide under and directly contacting the conductive layer including silver, and a dielectric layer(s) including tin oxide or silicon nitride over the conductive layer including silver. Processing circuitry electrically connects to the electrodes and measures an aspect of the electrodes' capacitance. A laminate material is located between the first and second glass substrates. The TCC(s), when blanket deposited, may have a visible transmission of at least 88%, a sheet resistances of no more than 10 ohms per square, and a haze of no more than 0.5%. Mutual and self-capacitance designs are disclosed.
    Type: Application
    Filed: February 26, 2018
    Publication date: June 28, 2018
    Inventors: Vijayen S. VEERASAMY, Jason BLUSH, Eric W. AKKASHIAN, Willem DEN BOER, Alexey KRASNOV
  • Publication number: 20180136755
    Abstract: A multi-layer conductive coating is substantially transparent to visible light, contains at least one conductive layer comprising silver that is sandwiched between at least a pair of dielectric layers, and may be used as an electrode and/or conductive trace in a capacitive touch panel. The multi-layer conductive coating may contain a dielectric layer(s), and may be used in applications such as capacitive touch panels for controlling showers, appliances, vending machines, electronics, electronic devices, and/or the like. In certain example embodiments, different electrodes of the touch panel may be formed by different silver based layers of the same or different multi-layer coatings. In patterning the electrodes, different laser scribing wavelengths may be used to pattern different respective silver based layers, of the same or different multi-layer coating(s), in certain example embodiments.
    Type: Application
    Filed: January 11, 2018
    Publication date: May 17, 2018
    Inventors: Alexey KRASNOV, Willem DEN BOER
  • Patent number: 9965127
    Abstract: A projected capacitive touch panel, including a substrate, a silver-inclusive transparent conductive coating which forms a plurality of row electrodes, a plurality of column electrodes, and a plurality of conductive traces, and a signal processor which sequentially measures a capacitance between each of row electrodes and an adjacent column electrode. The row electrodes, the plurality of column electrodes, and the plurality of traces are on a plane substantially parallel to the substrate. Each of the row electrodes is electrically connected to the signal processor by one of the plurality of conductive traces. The plurality of traces are at least partially substantially parallel to the column electrodes.
    Type: Grant
    Filed: July 18, 2017
    Date of Patent: May 8, 2018
    Assignee: Guardian Glass, LLC
    Inventors: Willem Den Boer, Alexey Krasnov
  • Publication number: 20180113537
    Abstract: A multi-layer conductive coating is substantially transparent to visible light, contains at least one conductive layer comprising silver that is sandwiched between at least a pair of dielectric layers, and may be used as an electrode and/or conductive trace in a capacitive touch panel. The multi-layer conductive coating may contain a dielectric layer of or including zirconium oxide (e.g., ZrO2) and/or silicon nitride, and may be used in applications such as capacitive touch panels for controlling showers, appliances, vending machines, electronics, electronic devices, and/or the like. The coating may have increased resistivity, and thus reduced conductivity, compared to pure silver layers of certain coatings, in order to allow the silver-based coating to be more suitable for use as touch panel electrode(s).
    Type: Application
    Filed: December 21, 2017
    Publication date: April 26, 2018
    Inventors: Alexey KRASNOV, Willem DEN BOER, Jason BLUSH, Eric W. AKKASHIAN
  • Publication number: 20180113536
    Abstract: A multi-layer conductive coating is substantially transparent to visible light, contains at least one conductive layer comprising silver that is sandwiched between at least a pair of dielectric layers, and may be used as an electrode and/or conductive trace in a capacitive touch panel. The multi-layer conductive coating may contain a dielectric layer(s), and may be used in applications such as capacitive touch panels for controlling showers, appliances, vending machines, electronics, electronic devices, and/or the like. In certain example embodiments, different electrodes of the touch panel may have different resistance, with the respective silver-based structures of various electrodes being different from one another to provide different resistance for different electrodes.
    Type: Application
    Filed: December 21, 2017
    Publication date: April 26, 2018
    Inventors: Alexey KRASNOV, Willem DEN BOER, Jason BLUSH, Eric W. AKKASHIAN
  • Patent number: 9935211
    Abstract: A back contact configuration for a CIGS-type photovoltaic device is provided. According to certain examples, the back contact configuration includes an optical matching layer and/or portion of or including MoSe2 having a thickness substantially corresponding to maxima of absorption of reflected light in CIGS-type absorbers used in certain photovoltaic devices. Certain example methods for making the back contact configuration wherein a thickness of the MoSe2 layer and/or portion can be controlled to be within thickness ranges that correspond to maxima of CIGS light absorption for reflected solar light are also provided.
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: April 3, 2018
    Assignee: Guardian Glass, LLC
    Inventor: Alexey Krasnov
  • Patent number: 9919959
    Abstract: A coated article includes a low-emissivity (low-E) coating supported by a substrate (e.g., glass substrate) for use in a window, where the low-E coating is exposed to ultraviolet (UV) radiation in order to improve the coating's and thus the coated article's electrical, optical and/or thermal blocking properties. Exposing the low-E coating to UV radiation, e.g., emitted from a UV lamp(s) and/or UV laser(s), allows for selective heating of a contact/seed layer which transfers energy to the adjacent IR reflecting layer.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: March 20, 2018
    Assignee: Guardian Glass, LLC
    Inventors: Alexey Krasnov, Muhammad Imran, Willem Den Boer, Kevin O'Connor
  • Patent number: 9921704
    Abstract: A multi-layer conductive coating is substantially transparent to visible light, contains at least one conductive layer comprising silver that is sandwiched between at least a pair of dielectric layers, and may be used as an electrode and/or conductive trace in a capacitive touch panel. The multi-layer conductive coating may contain a dielectric layer of or including zirconium oxide (e.g., ZrO2), silicon nitride, and/or tin oxide in certain embodiments, and may be used in applications such as capacitive touch panels for controlling showers, appliances, vending machines, electronics, electronic devices, and/or the like.
    Type: Grant
    Filed: August 16, 2017
    Date of Patent: March 20, 2018
    Assignee: Guardian Glass, LLC
    Inventors: Alexey Krasnov, Willem Den Boer, Jian-gang Weng
  • Patent number: 9921703
    Abstract: A multi-layer conductive coating is substantially transparent to visible light, contains at least one conductive layer comprising silver that is sandwiched between at least a pair of dielectric layers, and may be used as an electrode and/or conductive trace in a capacitive touch panel. The multi-layer conductive coating may contain a dielectric layer of or including zirconium oxide (e.g., ZrO2) and/or silicon nitride, and may be used in applications such as capacitive touch panels for controlling showers, appliances, vending machines, electronics, electronic devices, and/or the like. The touch panel may further include a functional film(s) which may be one or more of: an index-matching film, an antiglare film, an anti-fingerprint film, and anti-microbial film, a scratch resistant film, and/or an antireflective (AR) film.
    Type: Grant
    Filed: August 16, 2017
    Date of Patent: March 20, 2018
    Assignee: Guardian Glass, LLC
    Inventors: Willem Den Boer, Alexey Krasnov, Jason Blush, Eric W. Akkashian
  • Patent number: 9904431
    Abstract: Certain example embodiments relate to capacitive touch panels. First and second glass substrates are substantially parallel and spaced apart from one another. At least one multi-layer transparent conductive coating (TCC) is patterned into electrodes and located between the first and second substrates. The TCC(s) include(s) at least one conductive layer including silver, a dielectric layer including zinc oxide under and directly contacting the conductive layer including silver, and a dielectric layer(s) including tin oxide or silicon nitride over the conductive layer including silver. Processing circuitry electrically connects to the electrodes and measures an aspect of the electrodes' capacitance. A laminate material is located between the first and second glass substrates. The TCC(s), when blanket deposited, may have a visible transmission of at least 88%, a sheet resistances of no more than 10 ohms per square, and a haze of no more than 0.5%. Mutual and self-capacitance designs are disclosed.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: February 27, 2018
    Assignee: Guardian Glass, LLC
    Inventors: Vijayen S. Veerasamy, Jason Blush, Eric W. Akkashian, Willem Den Boer, Alexey Krasnov
  • Publication number: 20180009704
    Abstract: Certain example embodiments of this invention relate to techniques for converting sputter-deposited TiNx or TiOxNy layers into TiOx layers via activation with electromagnetic radiation. An intermediate layer including TiOxNy, 0<y?1 is formed on a substrate. The intermediate layer is exposed to the radiation, which is preferentially absorbed by the intermediate layer in an amount sufficient to heat the intermediate layer to a temperature of 500-650 degrees C. while keeping the substrate at a significantly lower temperature. A flash light operated with a series of millisecond or sub-millisecond length pulses may be used in this regard. The converting removes nitrogen from, and introduces oxygen into, the intermediate layer, causing the layer to expand beyond its initial thickness. At least some of the final layer may have an anatase phase, and it may be photocatalytic. These layers may be used in low-maintenance glass, antireflective, and/or other applications.
    Type: Application
    Filed: July 11, 2016
    Publication date: January 11, 2018
    Inventors: Alexey KRASNOV, Jian-gang WENG, Xuequn HU
  • Publication number: 20180011567
    Abstract: A multi-layer conductive coating is substantially transparent to visible light, contains at least one conductive layer comprising silver that is sandwiched between at least a pair of dielectric layers, and may be used as an electrode and/or conductive trace in a capacitive touch panel. The multi-layer conductive coating may contain a dielectric layer of or including zirconium oxide (e.g., ZrO2) and/or silicon nitride, and may be used in applications such as capacitive touch panels for controlling showers, appliances, vending machines, electronics, electronic devices, and/or the like. The touch panel may further include a functional film(s) which may be one or more of: an index-matching film, an antiglare film, an anti-fingerprint film, and anti-microbial film, a scratch resistant film, and/or an antireflective (AR) film.
    Type: Application
    Filed: August 16, 2017
    Publication date: January 11, 2018
    Inventors: Willem DEN BOER, Alexey KRASNOV, Jason BLUSH, Eric W. AKKASHIAN
  • Publication number: 20170344157
    Abstract: A multi-layer conductive coating is substantially transparent to visible light, contains at least one conductive layer comprising silver that is sandwiched between at least a pair of dielectric layers, and may be used as an electrode and/or conductive trace in a capacitive touch panel. The multi-layer conductive coating may contain a dielectric layer of or including zirconium oxide (e.g., ZrO2), silicon nitride, and/or tin oxide in certain embodiments, and may be used in applications such as capacitive touch panels for controlling showers, appliances, vending machines, electronics, electronic devices, and/or the like.
    Type: Application
    Filed: August 16, 2017
    Publication date: November 30, 2017
    Inventors: Alexey KRASNOV, Willem DEN BOER, Jian-gang WENG
  • Publication number: 20170315638
    Abstract: A projected capacitive touch panel, including a substrate, a silver-inclusive transparent conductive coating which forms a plurality of row electrodes, a plurality of column electrodes, and a plurality of conductive traces, and a signal processor which sequentially measures a capacitance between each of row electrodes and an adjacent column electrode. The row electrodes, the plurality of column electrodes, and the plurality of traces are on a plane substantially parallel to the substrate. Each of the row electrodes is electrically connected to the signal processor by one of the plurality of conductive traces. The plurality of traces are at least partially substantially parallel to the column electrodes.
    Type: Application
    Filed: July 18, 2017
    Publication date: November 2, 2017
    Inventors: Willem DEN BOER, Alexey KRASNOV
  • Publication number: 20170315637
    Abstract: Certain example embodiments relate to capacitive touch panels. First and second glass substrates are substantially parallel and spaced apart from one another. At least one multi-layer transparent conductive coating (TCC) is patterned into electrodes and located between the first and second substrates. The TCC(s) include(s) at least one conductive layer including silver, a dielectric layer including zinc oxide under and directly contacting the conductive layer including silver, and a dielectric layer(s) including tin oxide or silicon nitride over the conductive layer including silver. Processing circuitry electrically connects to the electrodes and measures an aspect of the electrodes' capacitance. A laminate material is located between the first and second glass substrates. The TCC(s), when blanket deposited, may have a visible transmission of at least 88%, a sheet resistances of no more than 10 ohms per square, and a haze of no more than 0.5%. Mutual and self-capacitance designs are disclosed.
    Type: Application
    Filed: July 12, 2017
    Publication date: November 2, 2017
    Inventors: Vijayen S. VEERASAMY, Jason BLUSH, Eric W. AKKASHIAN, Willem DEN BOER, Alexey KRASNOV
  • Publication number: 20170256250
    Abstract: Certain example embodiments relate to an acoustic wall assembly that uses active and/or passive sound reverberation to achieve noise-disruptive functionality, and/or a method of making and/or using the same. With the active approach, sound waves in a given frequency range are detected by a sound masking circuit. Responsive to detection of such sound waves, an air pump (e.g., speaker) is used to pump air in the wall assembly to actively mask the detected sound waves via reverberation and/or the like. The wall assembly may include one, two, or more walls, and the walls may be partial or full walls. With the passive approach, sound waves in a given frequency range are disrupted via features (e.g., holes, slits, etc.) formed in and/or on a wall itself. These techniques may be used together or separately, in different example embodiments.
    Type: Application
    Filed: March 1, 2016
    Publication date: September 7, 2017
    Inventors: Alexey KRASNOV, Barry B. CORDEN, Ed GREEN
  • Publication number: 20170256251
    Abstract: Certain example embodiments relate to an acoustic wall assembly that uses active and/or passive sound reverberation to achieve noise-disruptive functionality, and/or a method of making and/or using the same. With the active approach, sound waves in a given frequency range are detected by a sound masking circuit. Responsive to detection of such sound waves, an air pump (e.g., speaker) is used to pump air in the wall assembly to actively mask the detected sound waves via reverberation and/or the like. The wall assembly may include one, two, or more walls, and the walls may be partial or full walls. With the passive approach, sound waves in a given frequency range are disrupted via features (e.g., holes, slits, etc.) formed in and/or on a wall itself. These techniques may be used together or separately, in different example embodiments.
    Type: Application
    Filed: March 1, 2016
    Publication date: September 7, 2017
    Inventors: Alexey KRASNOV, Barry B. CORDEN, Ed GREEN
  • Publication number: 20170256249
    Abstract: Certain example embodiments relate to an acoustic wall assembly that uses active and/or passive sound reverberation to achieve noise-disruptive functionality, and/or a method of making and/or using the same. With the active approach, sound waves in a given frequency range are detected by a sound masking circuit. Responsive to detection of such sound waves, an air pump (e.g., speaker) is used to pump air in the wall assembly to actively mask the detected sound waves via reverberation and/or the like. The wall assembly may include one, two, or more walls, and the walls may be partial or full walls. With the passive approach, sound waves in a given frequency range are disrupted via features (e.g., holes, slits, etc.) formed in and/or on a wall itself. These techniques may be used together or separately, in different example embodiments.
    Type: Application
    Filed: March 1, 2016
    Publication date: September 7, 2017
    Inventors: Alexey KRASNOV, Barry B. CORDEN
  • Patent number: 9740357
    Abstract: A projected capacitive touch panel, including a substrate, a silver-inclusive transparent conductive coating which forms a plurality of row electrodes, a plurality of column electrodes, and a plurality of conductive traces, and a signal processor which sequentially measures a capacitance between each of row electrodes and an adjacent column electrode. The row electrodes, the plurality of column electrodes, and the plurality of traces are on a plane substantially parallel to the substrate. Each of the row electrodes is electrically connected to the signal processor by one of the plurality of conductive traces. The plurality of traces are at least partially substantially parallel to the column electrodes.
    Type: Grant
    Filed: May 4, 2016
    Date of Patent: August 22, 2017
    Assignee: Guardian Industries Corp.
    Inventors: Willem Den Boer, Alexey Krasnov
  • Patent number: 9733779
    Abstract: Certain example embodiments relate to capacitive touch panels. First and second glass substrates are substantially parallel and spaced apart from one another. At least one multi-layer transparent conductive coating (TCC) is patterned into electrodes and located between the first and second substrates. The TCC(s) include(s) at least one conductive layer including silver, a dielectric layer including zinc oxide under and directly contacting the conductive layer including silver, and a dielectric layer(s) including tin oxide or silicon nitride over the conductive layer including silver. Processing circuitry electrically connects to the electrodes and measures an aspect of the electrodes' capacitance. A laminate material is located between the first and second glass substrates. The TCC(s), when blanket deposited, may have a visible transmission of at least 88%, a sheet resistances of no more than 10 ohms per square, and a haze of no more than 0.5%. Mutual and self-capacitance designs are disclosed.
    Type: Grant
    Filed: July 21, 2016
    Date of Patent: August 15, 2017
    Assignee: Guardian Industries Corp.
    Inventors: Vijayen S. Veerasamy, Jason Blush, Eric W. Akkashian, Willem Den Boer, Alexey Krasnov