Patents by Inventor Alfred Rieder

Alfred Rieder has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060225517
    Abstract: To conduct a fluid, the transducer has a flow tube which in operation is vibrated by an excitation assembly and whose inlet-side and outlet-side vibrations are sensed by means of a sensor arrangement. To produce shear forces in the fluid, the flow tube is at least intermittently excited into torsional vibrations about a longitudinal flow-tube axis. The transducer further comprises a torsional vibration absorber which is fixed to the flow tube and which in operation covibrates with the torsionally vibrating flow tube, thus producing reactive torques which at least partially balance torques developed in the vibrating flow tube. One of the advantages of the transducer disclosed is that it is dynamically balanced to a large extent even in the face of variations in fluid density or viscosity.
    Type: Application
    Filed: June 8, 2006
    Publication date: October 12, 2006
    Applicant: Endress + Hauser Flowtec AG
    Inventors: Alfred Rieder, Wolfgang Drahm
  • Patent number: 7080564
    Abstract: To conduct a fluid, the transducer has a flow tube which in operation is vibrated by an excitation assembly and whose inlet-side and outlet-side vibrations are sensed by means of a sensor arrangement. To produce shear forces in the fluid, the flow tube is at least intermittently excited into torsional vibrations about a longitudinal flow-tube axis. The transducer further comprises a torsional vibration absorber which is fixed to the flow tube and which in operation covibrates with the torsionally vibrating flow tube, thus producing reactive torques which at least partially balance torques developed in the vibrating flow tube. One of the advantages of the transducer disclosed is that it is dynamically balanced to a large extent even in the face of variations in fluid density or viscosity.
    Type: Grant
    Filed: August 29, 2005
    Date of Patent: July 25, 2006
    Assignee: Endress + Hauser Flowtec AG
    Inventors: Alfred Rieder, Wolfgang Drahm
  • Publication number: 20060156830
    Abstract: A process meter for measuring at least one physical process variable of a medium stored in a container or flowing in a line, comprising: a transducer including a sensor arrangement providing measurement signals (s1, s2), said sensor arrangement having: at least a first sensor providing at least a first measurement signal (s1) in response to the physical process variable being measured, particularly to changes in the process variable, and at least a first temperature sensor mounted in said transducer for locally sensing a first temperature, T1, in the transducer, and by means of said at least one temperature sensor, at least a first temperature measurement signal (?1) representing the first temperature, T1, in said transducer; and meter electronics which, using at least said first measurement signal (s1) and a first correction value (K1) for the at least first measurement signal (s1), derive at least one measured value (X) currently representing the physical variable, wherein: during operation, said meter elec
    Type: Application
    Filed: December 12, 2005
    Publication date: July 20, 2006
    Applicant: Endress + Hauser Flowtec AG
    Inventors: Wolfgang Drahm, Alfred Rieder
  • Publication number: 20060156831
    Abstract: A Coriolis mass flow measuring device includes a vibratory measuring transducer having at least one measuring tube, which has medium flowing through it during operation. In operation, the measuring tube is caused by an exciter arrangement to undergo mechanical oscillations, especially bending oscillations. Additionally, the Coriolis mass flow measuring device includes a sensor arrangement for producing oscillation measurement signals (s1, s2) representing the inlet-end and outlet-end oscillations of the measuring tube. Measuring device electronics controlling the exciter arrangement produces an exciter current (iexc) and an intermediate value (X?m) derived from the oscillation measurement signals (s1, s2). This intermediate value represents an uncorrected mass flow. Derived from the exciter current and/or from a component of the exciter current (iexc), an intermediate value (X2) is produced, which corresponds to a damping of the oscillations of the measuring tube.
    Type: Application
    Filed: March 21, 2006
    Publication date: July 20, 2006
    Applicant: Endress + Hauser Flowtec AG
    Inventors: Alfred Rieder, Wolfgang Drahm, Michael Fuchs, Hans-Jorg Sprich, Ibho Itin, Samuel Wyss
  • Patent number: 7077014
    Abstract: For conveying a fluid, the measuring transducer is equipped with a measuring tube, which is held oscillatably in a support element and vibrates during operation. The measuring tube executes, during operation, at least over part of its length, driven by an exciter arrangement, bending oscillations about an oscillation axis. These bending oscillations predominantly assume an oscillation form having at least three bending oscillation antinodes. Inlet-end and outlet-end oscillations are registered by means of a sensor arrangement. Additionally provided in the measuring transducer is a coupler arrangement connected with measuring tube and with support element and having at least one coupling element interacting mechanically, especially resiliently, with the vibrating measuring tube and the support element.
    Type: Grant
    Filed: June 23, 2005
    Date of Patent: July 18, 2006
    Assignee: Endress + Hauser Flowtec AG
    Inventors: Alfred Rieder, Wolfgang Drahm
  • Publication number: 20060107758
    Abstract: A measurement transducer includes a transducer housing, which exhibits a multiplicity of natural oscillation modes and at least a first measuring tube for conveying at least a volume fraction of the medium to be measured. The measuring tube is held to oscillation in the transducer housing and vibrator, at least at times. Also included is an electromechanical, exciter mechanism acting on the at least one measuring tube and a sensor arrangement reacting to movements, i.e. bending oscillations, of the measuring tube. Also included is a first support element fixed, i.e. directly, to the transducer housing and serving for the formation of essentially locationally fixed oscillation nodes in the transducer housing for suppressing or erasing at least one natural oscillation mode of the transducer housing.
    Type: Application
    Filed: November 4, 2005
    Publication date: May 25, 2006
    Applicant: Endress + Hauser Flowtec AG
    Inventors: Alfred Rieder, Christian Schuetze, Martin Anklin-Imhof
  • Patent number: 7040179
    Abstract: A process meter for measuring at least one physical process variable of a medium stored in a container or flowing in a line, comprising: a transducer including a sensor arrangement providing measurement signals (s1, s2), said sensor arrangement having: at least a first sensor providing at least a first measurement signal (s1) in response to the physical process variable being measured, particularly to changes in the process variable, and at least a first temperature sensor mounted in said transducer for locally sensing a first temperature, T1, in the transducer, and by means of said at least one temperature sensor, at least a first temperature measurement signal (?1) representing the first temperature, T1, in said transducer; and meter electronics which, using at least said first measurement signal (s1) and a first correction value (K1) for the at least first measurement signal (s1), derive at least one measured value (X) currently representing the physical variable, wherein: during operation, said meter elec
    Type: Grant
    Filed: December 8, 2003
    Date of Patent: May 9, 2006
    Assignee: Endress+ Hauser Flowtec AG
    Inventors: Wolfgang Drahm, Alfred Rieder
  • Patent number: 7040181
    Abstract: A Coriolis mass flow measuring device includes a vibratory measuring transducer having at least one measuring tube, which has medium flowing through it during operation. In operation, the measuring tube is caused by an exciter arrangement to undergo mechanical oscillations, especially bending oscillations. Additionally, the Coriolis mass flow measuring device includes a sensor arrangement for producing oscillation measurement signals (s1, S2) representing the inlet-end and outlet-end oscillations of the measuring tube. Measuring device electronics controlling the exciter arrangement produces an exciter current (iexc) and an intermediate value (X?m) derived from the oscillation measurement signals (s1, s2). This intermediate value represents an uncorrected mass flow. Derived from the exciter current and/or from a component of the exciter current (iexc), an intermediate value (X2) is produced, which corresponds to a damping of the oscillations of the measuring tube.
    Type: Grant
    Filed: March 21, 2005
    Date of Patent: May 9, 2006
    Assignee: Endress + Hauser Flowtec AG
    Inventors: Alfred Rieder, Wolfgang Drahm, Michael Fuchs, Hans-Jörg Sprich, Ibho Itin, Samuel Wyss
  • Patent number: 7036355
    Abstract: The viscometer provides a viscosity value (X?) which represents the viscosity of a fluid flowing in a pipe connected thereto. It comprises a vibratory transducer with at least one flow tube for conducting the fluid, which communicates with the pipe. Driven by an excitation assembly, the flow tube is vibrated so that friction forces are produced in the fluid. The viscometer further includes meter electronics which feed an excitation current (iexc) into the excitation assembly. By means of the meter electronics, a first internal intermediate value (X1) is formed, which corresponds with the excitation current (iexc) and thus represents the friction forces acting in the fluid. According to the invention, a second internal intermediate value (X2), representing inhomogeneities in the fluid, is generated in the meter electronics, which then determine the viscosity value (X?) using the two intermediate values (X1, X2).
    Type: Grant
    Filed: April 30, 2004
    Date of Patent: May 2, 2006
    Assignee: Endress + Hauser Flowtec AG
    Inventors: Wolfgang Drahm, Alfred Rieder
  • Publication number: 20060086196
    Abstract: An inline measuring device includes a vibration-type measurement pickup having at least one measuring tube, which has a medium to be measured flowing through it during operation. The measuring tube is made by means of an exciter arrangement to execute, at least at times and/or at least in part, lateral oscillations and, at least at times and/or at least in part, torsional oscillations about an imaginary measuring tube longitudinal axis. The torsional oscillations alternate with the lateral oscillations or are, at times, superimposed thereon. Also included is a sensor arrangement for producing oscillation measurement signals correspondingly representing oscillations of the measuring tube. Measuring device electronics controlling the exciter arrangement generates, by means of at least one of the oscillation measurement signals and/or by means of the exciter current, at least at times, at least one measured value, which represents the at least one physical quantity to be measured.
    Type: Application
    Filed: March 21, 2005
    Publication date: April 27, 2006
    Applicant: Endress + Hauser Flowtec AG
    Inventors: Alfred Rieder, Wolfgang Drahm, Michael Fuchs, Hans-Jorg Sprich, Ibho Itin, Samuel Wyss
  • Patent number: 7017424
    Abstract: To conduct a fluid, the transducer has a flow tube which in operation is vibrated by an excitation assembly and whose inlet-side and outlet-side vibrations are sensed by means of a sensor arrangement. To produce shear forces in the fluid, the flow tube is at least intermittently excited into torsional vibrations about a longitudinal flow-tube axis. The transducer further comprises a torsional vibration absorber which is fixed to the flow tube and which in operation covibrates with the torsionally vibrating flow tube, thus producing reactive torques which at least partially balance torques developed in the vibrating flow tube. One of the advantages of the transducer disclosed is that it is dynamically balanced to a large extent even in the face of variations in fluid density or viscosity.
    Type: Grant
    Filed: May 8, 2003
    Date of Patent: March 28, 2006
    Assignee: Endress + Hauser Flowtec AG
    Inventors: Alfred Rieder, Wolfgang Drahm
  • Patent number: 7010989
    Abstract: To conduct a fluid, the transducer has a flow tube which in use is vibrated by an excitation system and whose inlet-side and outlet-side vibrations are detected by means of a sensor system. In response to transverse forces produced in the vibrating flow tube, the latter is, at least temporarily, laterally displaced from an assigned static rest position. To improve the dynamic balance of the transducer, a first cantilever and a second cantilever are rigidly fixed to an inlet-side tube section and an outlet-side tube section, respectively. By means of the cantilevers, the inlet-side and outlet-side tube sections are deformed as a result of lateral displacements of the flow tube. This produces counterforces which at least partially counterbalance the transverse forces produced in the vibrating flow tube. One advantage of the proposed transducer is that it is well balanced even during variations in fluid density.
    Type: Grant
    Filed: December 8, 2004
    Date of Patent: March 14, 2006
    Assignee: Endress & Hauser Flowtec AG
    Inventors: Alfred Rieder, Wolfgang Drahm
  • Publication number: 20060000292
    Abstract: To conduct a fluid, the transducer has a flow tube which in operation is vibrated by an excitation assembly and whose inlet-side and outlet-side vibrations are sensed by means of a sensor arrangement. To produce shear forces in the fluid, the flow tube is at least intermittently excited into torsional vibrations about a longitudinal flow-tube axis. The transducer further comprises a torsional vibration absorber which is fixed to the flow tube and which in operation covibrates with the torsionally vibrating flow tube, thus producing reactive torques which at least partially balance torques developed in the vibrating flow tube. One of the advantages of the transducer disclosed is that it is dynamically balanced to a large extent even in the face of variations in fluid density or viscosity.
    Type: Application
    Filed: August 29, 2005
    Publication date: January 5, 2006
    Applicant: Endress + Hauser flowtec AG
    Inventors: Alfred Rieder, Wolfgang Drahm
  • Publication number: 20060000293
    Abstract: For conveying a fluid, the measuring transducer is equipped with a measuring tube, which is held oscillatably in a support element and vibrates during operation. The measuring tube executes, during operation, at least over part of its length, driven by an exciter arrangement, bending oscillations about an oscillation axis. These bending oscillations predominantly assume an oscillation form having at least three bending oscillation antinodes. Inlet-end and outlet-end oscillations are registered by means of a sensor arrangement. Additionally provided in the measuring transducer is a coupler arrangement connected with measuring tube and with support element and having at least one coupling element interacting mechanically, especially resiliently, with the vibrating measuring tube and the support element.
    Type: Application
    Filed: June 23, 2005
    Publication date: January 5, 2006
    Applicant: Endress + Hauser Flowtec AG
    Inventors: Alfred Rieder, Wolfgang Drahm
  • Publication number: 20050241372
    Abstract: The viscometer provides a viscosity value (X?) which represents the viscosity of a fluid flowing in a pipe connected thereto. It comprises a vibratory transducer with at least one flow tube for conducting the fluid, which communicates with the pipe. Driven by an excitation assembly, the flow tube is vibrated so that friction forces are produced in the fluid. The viscometer further includes meter electronics which feed an excitation current (iexc) into the excitation assembly. By means of the meter electronics, a first internal intermediate value (X1) is formed, which corresponds with the excitation current (iexc) and thus represents the friction forces acting in the fluid. According to the invention, a second internal intermediate value (X2), representing inhomogeneities in the fluid, is generated in the meter electronics, which then determine the viscosity value (X?) using the two intermediate values (X1, X2).
    Type: Application
    Filed: July 12, 2005
    Publication date: November 3, 2005
    Applicant: Endress + Hauser Flowtec AG
    Inventors: Wolfgang Drahm, Alfred Rieder
  • Publication number: 20050229719
    Abstract: A Coriolis mass flow measuring device includes a vibratory measuring transducer having at least one measuring tube, which has medium flowing through it during operation. In operation, the measuring tube is caused by an exciter arrangement to undergo mechanical oscillations, especially bending oscillations. Additionally, the Coriolis mass flow measuring device includes a sensor arrangement for producing oscillation measurement signals (s1, S2) representing the inlet-end and outlet-end oscillations of the measuring tube. A Measuring device electronics controlling the exciter arrangement produces an exciter current (iexc) and an intermediate value (X?m) derived from the oscillation measurement signals (s1, s2). This intermediate value represents an uncorrected mass flow. Derived from the exciter current and/or from a component of the exciter current (iexc), an intermediate value (X2) is produced, which corresponds to a damping of the oscillations of the measuring tube.
    Type: Application
    Filed: March 21, 2005
    Publication date: October 20, 2005
    Applicant: Endress + Hauser Flowtec AG
    Inventors: Alfred Rieder, Wolfgang Drahm, Michael Fuchs, Hans-Jorg Sprich, Ibho Itin, Samuel Wyss
  • Patent number: 6910366
    Abstract: The viscometer provides a viscosity value (X?) which represents the viscosity of a fluid flowing in a pipe connected thereto. It comprises a vibratory transducer with at least one flow tube for conducting the fluid, which communicates with the pipe. Driven by an excitation assembly, the flow tube is vibrated so that friction forces are produced in the fluid. The viscometer further includes meter electronics which feed an excitation current (iexc) into the excitation assembly. By means of the meter electronics, a first internal intermediate value (X1) is formed, which corresponds with the excitation current (iexc) and thus represents the friction forces acting in the fluid. According to the invention, a second internal intermediate value (X2), representing inhomogeneities in the fluid, is generated in the meter electronics, which then determine the viscosity value (X?) using the two intermediate values (X1, X2).
    Type: Grant
    Filed: August 23, 2002
    Date of Patent: June 28, 2005
    Assignee: Endress + Hauser Flowtec AG
    Inventors: Wolfgang Drahm, Alfred Rieder
  • Publication number: 20050092104
    Abstract: To conduct a fluid, the transducer has a flow tube which in use is vibrated by an excitation system and whose inlet-side and outlet-side vibrations are detected by means of a sensor system. In response to transverse forces produced in the vibrating flow tube, the latter is, at least temporarily, laterally displaced from an assigned static rest position. To improve the dynamic balance of the transducer, a first cantilever and a second cantilever are rigidly fixed to an inlet-side tube section and an outlet-side tube section, respectively. By means of the cantilevers, the inlet-side and outlet-side tube sections are deformed as a result of lateral displacements of the flow tube. This produces counterforces which at least partially counterbalance the transverse forces produced in the vibrating flow tube. One advantage of the proposed transducer is that it is well balanced even during variations in fluid density.
    Type: Application
    Filed: December 8, 2004
    Publication date: May 5, 2005
    Inventors: Alfred Rieder, Wolfgang Drahm
  • Patent number: 6880410
    Abstract: The transducer serves to generate a measurement signal corresponding to at least one physical parameter of a fluid flowing in a pipe. It comprises a flow tube of predeterminable lumen for conducting the fluid which communicates with the pipe at the inlet and outlet ends. In operation, an excitation assembly causes reactions, particularly reaction forces, in the fluid within the at least one flow tube in a non-invasive manner, which are sensed and converted into measurement signals representative thereof by means of a sensor arrangement. To obtain as axisymmetric a density distribution in the fluid as possible, means are provided in an inlet area of the transducer or at least in the vicinity thereof which cause a swirl in the entering fluid and, thus, a rotational motion in the fluid within the flow-tube lumen about an axis of rotation lying in the direction of fluid flow.
    Type: Grant
    Filed: March 13, 2003
    Date of Patent: April 19, 2005
    Assignee: Endress + Hauser Flowtec AG
    Inventors: Wolfgang Drahm, Alfred Rieder
  • Patent number: 6851323
    Abstract: To conduct a fluid, the transducer has a flow tube which in use is vibrated by an excitation system and whose inlet-side and outlet-side vibrations are detected by means of a sensor system. In response to transverse forces produced in the vibrating flow tube, the latter is, at least temporarily, laterally displaced from an assigned static rest position. To improve the dynamic balance of the transducer, a first cantilever and a second cantilever are rigidly fixed to an inlet-side tube section and an outlet-side tube section, respectively. By means of the cantilevers, the inlet-side and outlet-side tube sections are deformed as a result of lateral displacements of the flow tube. This produces counterforces which at least partially counterbalance the transverse forces produced in the vibrating flow tube. One advantage of the proposed transducer is that it is well balanced even during variations in fluid density.
    Type: Grant
    Filed: December 31, 2003
    Date of Patent: February 8, 2005
    Assignee: Endress + Hauser Flowtec AG
    Inventors: Alfred Rieder, Wolfgang Drahm