Patents by Inventor Alfred Rieder

Alfred Rieder has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7614309
    Abstract: In order to be able to couple as great a fraction as possible of ultrasonic measuring signals into a medium to be measured, an ultrasonic sensor is provided with a cup-shape and includes a housing and an oscillatable unit for producing the ultrasonic signals. The oscillatable unit is composed of a plurality of components and is so embodied that it has a node plane, which is oriented essentially perpendicularly to the radiating or receiving direction of the ultrasonic measuring signals. At least a portion of the outer surface of the oscillatable unit is connected with the housing in the region of the node plane of the oscillatable unit.
    Type: Grant
    Filed: November 26, 2004
    Date of Patent: November 10, 2009
    Assignee: Endress & Hauser Flowtec AG
    Inventors: Alfred Rieder, Achim Wiest, Torsten Strunz, Michal Bezdek
  • Publication number: 20090241646
    Abstract: The viscometer provides a viscosity value (X?) which represents the viscosity of a fluid flowing in a pipe connected thereto. It comprises a vibratory transducer with at least one flow tube for conducting the fluid, which communicates with the pipe. Driven by an excitation assembly, the flow tube is vibrated so that friction forces are produced in the fluid. The viscometer further includes meter electronics which feed an excitation current (iexc) into the excitation assembly. By means of the meter electronics, a first internal intermediate value (X1) is formed, which corresponds with the excitation current (iexc) and thus represents the friction forces acting in the fluid. According to the invention, a second internal intermediate value (X2), representing inhomogeneities in the fluid, is generated in the meter electronics, which then determine the viscosity value (X?) using the two intermediate values (X1, X2).
    Type: Application
    Filed: March 17, 2009
    Publication date: October 1, 2009
    Applicant: Endress + Hauser Flowter AG
    Inventors: Alfred Rieder, Wolfgang Drahm
  • Patent number: 7562586
    Abstract: An inline measuring device comprising a measurement pickup of vibration-type and measuring device electronics electrically coupled with the measurement pickup. The measurement pickup includes at least one, essentially straight measuring tube, an exciter mechanism acting on the measuring tube for causing the at least one measuring tube to vibrate, during operation, with torsional oscillations about a torsional oscillation axis, and a sensor arrangement for registering vibrations of the at least one measuring tube and delivering at least one oscillation measurement signal representing oscillations of the measuring tube. The measuring device electronics delivers, at least at times, an exciter signal driving the exciter mechanism and generates, by means of at least one of: the at least one oscillation measurement signal and the exciter signal, at least one measured value, which represents at least one physical, measured variable of the medium to be measured.
    Type: Grant
    Filed: October 23, 2006
    Date of Patent: July 21, 2009
    Assignee: Endress + Hauser Flowtec AG
    Inventors: Alfred Rieder, Michael Fuchs, Wolfgang Drahm
  • Publication number: 20090173169
    Abstract: The measuring transducer includes: a measuring tube vibrating, at least at times, and serving for conveying medium to be measured; a counteroscillator, which is affixed to the measuring tube on an inlet-side, to form a first coupling zone, and to the measuring tube on an outlet-side, to form a second coupling zone; at least one oscillation exciter for driving at least the measuring tube; as well as at least one oscillation sensor for registering oscillations at least of the measuring tube. During operation, the measuring tube executes, at least at times and/or at least in part, bending oscillations about an imaginary bending oscillation axis, which imaginarily connects the two coupling zones with one another.
    Type: Application
    Filed: December 19, 2008
    Publication date: July 9, 2009
    Applicant: Endrees + Hasuer Flowtec AG
    Inventors: Enio Bitto, Alfred Rieder, Christian Schutze, Michael Fuchs, Wolfgang Drahm, Michael Wiesmann
  • Publication number: 20090145244
    Abstract: A measuring transducer includes: a measuring tube vibrating at least at times and serving for conveying medium to be measured; a counteroscillator, which is affixed to the measuring tube on an inlet-side, to form a first coupling zone, and to the measuring tube on an outlet-side, to form a second coupling zone; an exciter mechanism for driving at least the measuring tube; as well as a sensor arrangement for registering oscillations at least of the measuring tube. During operation, the measuring tube executes, at least at times and/or at least in part, bending oscillations about an imaginary bending oscillation axis, which imaginarily connects the two coupling zones with one another. Additionally, at least a first spring element and a second spring element are included, with each of the at least two spring elements being affixed to the measuring tube and the counteroscillator spaced both from each of the two coupling zones as well as also from the exciter mechanism.
    Type: Application
    Filed: October 22, 2008
    Publication date: June 11, 2009
    Applicant: Endress + Hauser Flowtec AG
    Inventors: Alfred Rieder, Michael Fuchs, Wolfgang Drahm, Leonhard Probst
  • Patent number: 7523662
    Abstract: The process meter comprises a sensor that can be mounted in a wall of a vessel for holding or conveying a process medium, and a meter-electronics case mechanically coupled to the sensor. In operation, the electronics case is at least intermittently subjected to vibrations either generated in the sensor itself or transmitted via the sensor. To reduce amplitudes of such vibrations of the electronics case, at least one vibration absorber is affixed to a wall of the electronics case. This vibration absorber is vibrated at least intermittently in order to dissipate vibrational energy taken into the electronic case. By the suppression of such case vibrations, spurious components in the measurement signal can be reduced to the point that a significant improvement in signal-to-noise ratio is obtained.
    Type: Grant
    Filed: October 27, 2003
    Date of Patent: April 28, 2009
    Assignee: Endress + Hauser Flowtec AG
    Inventors: Wolfgang Drahm, Helmut Zeislmeier, Alfred Rieder, Gabriele Fröhlich
  • Patent number: 7509879
    Abstract: A measurement pickup, or transducer, includes at least one measuring tube for the conveying of a fluid. The measuring tube has an inlet end and an outlet end and vibrates at least at times. For enabling the fluid to be measured to flow through the measuring tube, the measuring tube communicates, via a first tube segment opening into the inlet end and via a second tube segment opening into the outlet end, with a pipeline connected therewith. For the oscillatable holding of the measuring tube, the measurement pickup further includes a support element having a first end piece containing a passageway for the securement of the first tube segment and having a second end piece containing a passageway for the securement of the second tube segment.
    Type: Grant
    Filed: November 4, 2004
    Date of Patent: March 31, 2009
    Assignee: Endress + Hauser Flowtec AG
    Inventors: Alfred Rieder, Wolfgang Drahm
  • Patent number: 7490521
    Abstract: The measurement transducer includes: A measuring tube vibrating at least at times during operation and serving for the conveying of a medium, wherein the measuring tube communicates with a pipeline via an inlet tube piece at an inlet end and an outlet tube piece at an outlet end; a counteroscillator, which is affixed to the measuring tube on the inlet end to form a first coupling zone and affixed to the measuring tube on the outlet end to form a second coupling zone; and a first cantilever for producing bending moments in the inlet tube piece and coupled with the inlet tube piece and the measuring tube essentially rigidly in the area of the first coupling zone and having a center of mass lying in the region of the inlet tube piece, as well as a second cantilever for producing bending moments in the outlet tube piece and coupled essentially rigidly with the outlet tube piece and the measuring tube in the region of the second coupling zone and having a center of mass lying in the region of the outlet tube piece
    Type: Grant
    Filed: November 15, 2006
    Date of Patent: February 17, 2009
    Assignee: Endress + Hauser Flowtec AG
    Inventors: Ennio Bitto, Gerhard Eckert, Rainer Lorenz, Alfred Rieder, Christian Schuetze, Michal Fuchs, Martin Anklin-Imhof, Wolfgang Drahm, Leonhard Probst
  • Patent number: 7475603
    Abstract: The measurement transducer includes: A measuring tube vibrating at least at times during operation and serving for the conveying of a medium, wherein the measuring tube communicates with a pipeline via an inlet tube piece at an inlet end and an outlet tube piece at an outlet end; a counteroscillator, which is affixed to the measuring tube on the inlet end to form a first coupling zone and affixed to the measuring tube on the outlet end to form a second coupling zone; and a first cantilever for producing bending moments in the inlet tube piece and coupled with the inlet tube piece and the measuring tube essentially rigidly in the area of the first coupling zone and having a center of mass lying in the region of the inlet tube piece, as well as a second cantilever for producing bending moments in the outlet tube piece and coupled essentially rigidly with the outlet tube piece and the measuring tube in the region of the second coupling zone and having a center of mass lying in the region of the outlet tube piece
    Type: Grant
    Filed: November 15, 2006
    Date of Patent: January 13, 2009
    Assignee: Endress + Hauser Flowtec AG
    Inventors: Ennio Bitto, Gerhard Eckert, Rainer Lorenz, Alfred Rieder, Christian Schuetze, Michal Fuchs, Martin Anklin-Imhof, Wolfgang Drahm, Leonhard Probst
  • Patent number: 7472607
    Abstract: The measurement transducer includes: A measuring tube vibrating at least at times during operation and serving for the conveying of a medium, wherein the measuring tube communicates with a pipeline via an inlet tube piece at an inlet end and an outlet tube piece at an outlet end; a counteroscillator, which is affixed to the measuring tube on the inlet end to form a first coupling zone and affixed to the measuring tube on the outlet end to form a second coupling zone; and a first cantilever for producing bending moments in the inlet tube piece and coupled with the inlet tube piece and the measuring tube essentially rigidly in the area of the first coupling zone and having a center of mass lying in the region of the inlet tube piece, as well as a second cantilever for producing bending moments in the outlet tube piece and coupled essentially rigidly with the outlet tube piece and the measuring tube in the region of the second coupling zone and having a center of mass lying in the region of the outlet tube piece
    Type: Grant
    Filed: November 15, 2006
    Date of Patent: January 6, 2009
    Assignee: Endress + Hauser Flowtec AG
    Inventors: Ennio Bitto, Gerhard Eckert, Rainer Lorenz, Alfred Rieder, Christian Schuetze, Michal Fuchs, Martin Anklin-Imhof, Wolfgang Drahm, Leonhard Probst
  • Publication number: 20080250871
    Abstract: A measuring transducer includes: A measuring tube vibrating, at least at times, during operation and serving for conveying a medium, wherein the measuring tube communicates with a pipeline via an inlet tube piece at an inlet end and an outlet tube piece at an outlet end; a counteroscillator, which is affixed to the measuring tube on the inlet end to form a first coupling zone and affixed to the measuring tube on the outlet end to form a second coupling zone; and a transducer housing affixed to the inlet tube piece and the outlet tube piece. An exciter mechanism, for driving at least the measuring tube, and a sensor arrangement, for registering oscillations at least of the measuring tube, are, in each case, secured, at least in part, to the counteroscillator.
    Type: Application
    Filed: December 20, 2007
    Publication date: October 16, 2008
    Applicant: Endress + Hauser Flowtec AG
    Inventors: Alfred Rieder, Michael Fuchs, Leonhard Probst, Michael Wiesmann
  • Publication number: 20080223150
    Abstract: A measuring transducer includes: a measuring tube vibrating, at least at times, during operation and serving for conveying a medium, wherein the measuring tube communicates with a pipeline via an inlet tube piece on an inlet side and an outlet tube piece on an outlet side; a counteroscillator, which is affixed to the measuring tube on the inlet and outlet sides to form coupling zones; an cantilever coupled with the measuring tube on the inlet side; an cantilever coupled with the measuring tube on the outlet side; a sensor arrangement secured, at least in part, to the counteroscillator for registering oscillations at least of the measuring tube; an exciter mechanism secured, at least in part, to the counteroscillator for driving at least the measuring tube; a transducer housing affixed to the inlet tube piece and to the outlet tube piece; as well as connection lines, of which at least one is secured at least pointwise to the transducer housing and at least pointwise to an inner part of the measuring transducer
    Type: Application
    Filed: December 21, 2007
    Publication date: September 18, 2008
    Applicant: Endress + Hauser Flowtec AG
    Inventors: Alfred Rieder, Michael Fuchs, Leonhard Probst, Michael Wiesmann
  • Publication number: 20080223149
    Abstract: The measuring transducer includes: a measuring tube vibrating, at least at times, during operation and serving for conveying a medium, wherein the measuring tube communicates with a pipeline via an inlet tube piece at an inlet end and an outlet tube piece at an outlet end; a counteroscillator, which is affixed to the measuring tube on the inlet end to form a first coupling zone and affixed to the measuring tube on the outlet end to form a second coupling zone; a sensor arrangement secured, at least in part, to the counteroscillator for registering oscillations at least of the measuring tube; an exciter mechanism secured, at least in part, to the counteroscillator for driving at least the measuring tube; a transducer housing affixed to the inlet tube piece and the outlet tube piece; and connection lines, especially connection lines for the exciter mechanism and/or for the sensor arrangement, of which connection lines at least one is secured at least sectionally along the counteroscillator and secured at least
    Type: Application
    Filed: December 19, 2007
    Publication date: September 18, 2008
    Applicant: Endress + Hauser Flowtec AG
    Inventors: Alfred Rieder, Michael Fuchs, Leonhard Probst, Michael Wiesmann
  • Patent number: 7412903
    Abstract: An inline measuring device comprises a vibratory-type transducer and a measuring device electronics electrically coupled with the vibratory-type transducer. The vibratory-type transducer includes at least one measuring tube being inserted into the course of a pipeline and serving for conducting a mixture to be measured. An exciter arrangement acting on the measuring tube for causing the at least one measuring tube to vibrate and a sensor arrangement sensing vibrations of the at least one measuring tube and delivering at least one oscillation measurement signal representing oscillations of the measuring tube. The measuring device electronics delivers an excitation current driving the exciter arrangement. Further, the inline measuring device electronics is adapted to produce a measured value representing the physical, measured quantity of the mixture to be measured.
    Type: Grant
    Filed: May 18, 2006
    Date of Patent: August 19, 2008
    Assignee: Endress + Hauser Flowtec AG
    Inventors: Alfred Rieder, Wolfgang Drahm, Hao Zhu
  • Publication number: 20080184817
    Abstract: To conduct a fluid, the transducer has a flow tube which in operation is vibrated by an excitation assembly and whose inlet-side and outlet-side vibrations are sensed by means of a sensor arrangement. To produce shear forces in the fluid, the flow tube is at least intermittently excited into torsional vibrations about a longitudinal flow-tube axis. The transducer further comprises a torsional vibration absorber which is fixed to the flow tube and which in operation covibrates with the torsionally vibrating flow tube, thus producing reactive torques which at least partially balance torques developed in the vibrating flow tube. One of the advantages of the transducer disclosed is that it is dynamically balanced to a large extent even in the face of variations in fluid density or viscosity.
    Type: Application
    Filed: March 31, 2008
    Publication date: August 7, 2008
    Applicant: Endress + Hauser Flowtec AG
    Inventors: Alfred Rieder, Wolfgang Drahm
  • Patent number: 7406878
    Abstract: For measuring a medium, the medium flows through at least one inline measuring device measuring tube joined into the course of a pipeline, especially a measuring tube which vibrates, at least at times. Using an inline measuring device sensor arrangement arranged on the measuring tube and/or in its vicinity and reacting, at least mediately, to changes of the at least one physical parameter of the medium, at least one measurement signal is produced, which is influenced by at least one physical parameter of the medium in the measuring tube. Additionally, pressures effective in the medium are registered, in order to determine repeatedly a pressure difference existing in the flowing medium at least in part along the at least one measuring tube.
    Type: Grant
    Filed: September 27, 2006
    Date of Patent: August 5, 2008
    Assignee: Endress + Hauser Flowtec AG
    Inventors: Alfred Rieder, Wolfgang Drahm
  • Publication number: 20080127719
    Abstract: The viscometer comprises a vibratory transducer with at least one flow tube for conducting a fluid to be measured and for producing friction forces acting in the fluid. To vibrate the at least one flow tube, an excitation assembly is provided, which in operation is traversed by an excitation current. To generate the excitation current and a viscosity value representing the viscosity of the fluid, the viscometer includes meter electronics which are connected to, and supplied with electric power from, a two-wire process control loop. The meter electronics feed a viscosity signal corresponding to the measured viscosity value into the two-wire process control loop. The viscometer is suitable for measuring a fluid flowing in a pipe, particularly in potentially explosive atmospheres.
    Type: Application
    Filed: June 19, 2002
    Publication date: June 5, 2008
    Inventors: Wolfgang Drahm, Alfred Rieder, Christian Matt
  • Patent number: 7360453
    Abstract: The measuring device comprises, for measuring multi phase mixture, a vibratory-type transducer and a measuring device electronics electrically coupled with the vibratory-type transducer. The transducer includes at least one measuring tube inserted into the course of the pipeline. An exciter arrangement acts on the measuring tube for causing the at least one measuring tube to vibrate. A sensor arrangement senses vibrations of the at least one measuring tube and delivers at least one oscillation measurement signal representing oscillations of the measuring tube. Further, the measuring device electronics delivers an excitation current driving the exciter arrangement. The measuring device is adapted to compensating measurement errors, induced due to the presence of multi phase mixture, based on a movin resonator model (MRM).
    Type: Grant
    Filed: December 27, 2006
    Date of Patent: April 22, 2008
    Assignee: Endress + Hauser Flowtec AG
    Inventors: Alfred Rieder, Wolfgang Drahm
  • Patent number: 7360452
    Abstract: The measuring device comprises, for measuring multi phase mixture, a vibratory-type transducer and a measuring device electronics electrically coupled with the vibratory-type transducer. The transducer includes at least one measuring tube inserted into the course of the pipeline. An exciter arrangement acts on the measuring tube for causing the at least one measuring tube to vibrate. A sensor arrangement senses vibrations of the at least one measuring tube and delivers at least one oscillation measurement signal representing oscillations of the measuring tube. Further, the measuring device electronics delivers an excitation current driving the exciter arrangement. The measuring device is adapted to compensating measurement errors, induced due to the presence of multi phase mixture, based on a movin resonator model (MRM).
    Type: Grant
    Filed: December 26, 2006
    Date of Patent: April 22, 2008
    Assignee: Endress + Hauser Flowtec AG
    Inventors: Alfred Rieder, Wolfgang Drahm
  • Patent number: 7357039
    Abstract: A Coriolis mass flow measuring device includes a vibratory measuring transducer having at least one measuring tube, which has medium flowing through it during operation. In operation, the measuring tube is caused by an exciter arrangement to undergo mechanical oscillations, especially bending oscillations. Additionally, the Coriolis mass flow measuring device includes a sensor arrangement for producing oscillation measurement signals (s1, s2) representing the inlet-end and outlet-end oscillations of the measuring tube. Measuring device electronics controlling the exciter arrangement produces an exciter current (iexc) and an intermediate value (X?m) derived from the oscillation measurement signals (s1, s2). This intermediate value represents an uncorrected mass flow. Derived from the exciter current and/or from a component of the exciter current (iexc), an intermediate value (X2) is produced, which corresponds to a damping of the oscillations of the measuring tube.
    Type: Grant
    Filed: March 21, 2006
    Date of Patent: April 15, 2008
    Assignee: Endress + Hauser Flowtec AG
    Inventors: Alfred Rieder, Wolfgang Drahm, Michael Fuchs, Hans-Jörg Sprich, Ibho Itin, Samuel Wyss