Patents by Inventor ALFRED ZHANG

ALFRED ZHANG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240112628
    Abstract: An electronic device may include a lenticular display. The lenticular display may have a lenticular lens film formed over an array of pixels. A plurality of lenticular lenses may extend across the length of the display. The lenticular lenses may be configured to enable stereoscopic viewing of the display such that a viewer perceives three-dimensional images. The display may have a number of independently controllable viewing zones. The viewer may be particularly susceptible to artifacts caused by crosstalk at the edge viewing zones within the primary field of view of the display. Certain types of content may also be more vulnerable to crosstalk than other types of content. Therefore, to mitigate crosstalk artifacts, the pixel value for each pixel may be adjusted based on the viewing zone of the respective pixel and content information (such as texture information or brightness information) associated with the respective pixel.
    Type: Application
    Filed: December 14, 2023
    Publication date: April 4, 2024
    Inventors: Yunhui Hou, Yi-Pai Huang, Fu-Chung Huang, Sheng Zhang, Chaohao Wang, Ping-Yen Chou, Yi Huang, Juan He, Alfred B. Huergo Wagner, Seung Wook Kim
  • Patent number: 11933427
    Abstract: A fluid management assembly and a thermal management system. The fluid management assembly has a first chamber and a first valve core located in the first chamber. The fluid management assembly has a throttle chamber. The first valve core has a conduction channel. The first chamber can communicate with other portions by means of a throttle channel or the conduction channel.
    Type: Grant
    Filed: June 19, 2020
    Date of Patent: March 19, 2024
    Assignee: ZHEJIANG SANHUA INTELLIGENT CONTROLS CO., LTD.
    Inventors: Senrun Geng, Alfred Gunther, Xu Yong, Zhu Zhenshan, Rongrong Zhang
  • Patent number: 11813958
    Abstract: A vehicle, and a balancing device and method of controlling a state of charge of a reference electrode in a battery. The balancing device includes a measurement circuit and a charging circuit. The measurement circuit is configured to obtain a measurement of a reference voltage of the reference electrode. The charging circuit is configured to adjust the reference voltage based on the measurement. The state of charge of the reference electrode is controlled based on the reference voltage.
    Type: Grant
    Filed: September 17, 2021
    Date of Patent: November 14, 2023
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Brian J. Koch, Jing Gao, Alfred Zhang, Alok Warey, Jason Graetz, Chia-Ming Chang, Daniel M. Zehnder, Patrick J. Webb, Souren Soukiazian
  • Patent number: 11710864
    Abstract: A method of making a reference electrode assembly for an electrochemical cell according to various aspects of the present disclosure includes providing a subassembly including a separator layer and a current collector layer coupled to the separator layer. The method further includes providing an electrode ink including an electroactive material, a binder, and a solvent. The method further includes creating a reference electrode precursor by applying an electroactive precursor layer to the current collector layer. The electroactive precursor layer covers greater than or equal to about 90% of a superficial surface area of a surface of the current collector layer. The electroactive precursor layer includes the electrode ink. The method further includes creating the reference electrode assembly by drying the electroactive precursor layer to remove at least a portion of the solvent, thereby forming an electroactive layer. The electroactive layer is solid and porous.
    Type: Grant
    Filed: May 24, 2022
    Date of Patent: July 25, 2023
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Jing Gao, Brian J. Koch, Zhe Li, Alfred Zhang, Gayatri V. Dadheech
  • Publication number: 20230090433
    Abstract: A vehicle, and a balancing device and method of controlling a state of charge of a reference electrode in a battery. The balancing device includes a measurement circuit and a charging circuit. The measurement circuit is configured to obtain a measurement of a reference voltage of the reference electrode. The charging circuit is configured to adjust the reference voltage based on the measurement. The state of charge of the reference electrode is controlled based on the reference voltage.
    Type: Application
    Filed: September 17, 2021
    Publication date: March 23, 2023
    Inventors: Brian J. Koch, Jing Gao, Alfred Zhang, Alok Warey, Jason Graetz, Chia-Ming Chang, Daniel M. Zehnder, Patrick J. Webb, Souren Soukiazian
  • Patent number: 11592493
    Abstract: A method for battery capacity estimation is provided. The method includes monitoring a sensor, collecting a plurality of data points including a voltage-based state of charge value and an integrated current value, defining within the data points a first data set collected during a first time period and a second data set collected during a second time period, determining an integrated current error related to the second data set, comparing the integrated current error related to the second data set to a threshold integrated current error. When the error related to the second data set exceeds the threshold, the method further includes resetting the second data set based upon an integrated current value from the first time period. The method further includes combining the data sets to create a combined data set and determining a voltage slope capacity estimate as a change in integrated current versus voltage-based state of charge.
    Type: Grant
    Filed: January 15, 2020
    Date of Patent: February 28, 2023
    Assignee: GM Global Technology Operations LLC
    Inventors: Alfred Zhang, Justin Bunnell, Garrett M. Seeman, Jeffrey S. Piasecki, Charles W. Wampler, Brian J. Koch, Jing Gao, Jeffrey A. Bednar, Xiumei Guo, Justin R. McDade
  • Publication number: 20230030820
    Abstract: A supervisory computer is used with an energy management system of an electric vehicle. The energy management system includes a battery system having a plurality of battery subsystems. One of the battery subsystems is an abnormal battery subsystem while the remaining battery subsystems are normal battery subsystems. The supervisory computer includes at least one processor and at least one non-transitory computer-readable medium. The processor monitors the remaining state of charge, capacity, and resistance of the battery system and monitor the remaining state of charge and capacity of the abnormal battery subsystem, calculate a low integration bound value, calculate a remaining energy value for all of the normal battery subsystems with respect to the low integration value, calculate a remaining energy value for the abnormal battery subsystem, and summate the remaining energy values of the normal and abnormal battery subsystems to determine a global remaining energy value for the battery system.
    Type: Application
    Filed: July 28, 2021
    Publication date: February 2, 2023
    Inventors: Yue-Yun Wang, Garrett M. Seeman, Alfred Zhang
  • Patent number: 11531068
    Abstract: An apparatus and method for tracking a battery cell is disclosed, for a device having one or more sensors and a controller with a processor and tangible, non-transitory memory. The method includes obtaining respective sensor data relative to an anode and a cathode. A predicted anode capacity and predicted cathode capacity are determined based on the respective sensor data. The predicted anode capacity and predicted cathode capacity each have a respective variance value. An updated set of variables and updated respective variance values are generated based in part on the predicted anode capacity, the predicted cathode capacity and a measured equilibrium voltage, via a Kalman filter module executed by the controller. The updated set of variables include an updated anode capacity and an updated cathode capacity. Operation of the device is controlled based in part on the updated set of variables and updated respective variance values.
    Type: Grant
    Filed: February 5, 2020
    Date of Patent: December 20, 2022
    Assignee: GM Global Technology Operations LLC
    Inventors: Alfred Zhang, Charles W. Wampler
  • Patent number: 11525742
    Abstract: A temperature sensor for a battery cell of a rechargeable battery is described, and includes a resistive sensing element, a first electrode, and a second electrode. The resistive sensing element, the first electrode, and the second electrode are affixed to a porous separator. The porous separator is interposed between an anode and a cathode of the battery cell. The resistive sensing element is electrically connected in series between the first electrode and the second electrode, and the resistive sensing element, the first electrode and the second electrode are affixed onto the separator as film layers, and are porous.
    Type: Grant
    Filed: February 12, 2020
    Date of Patent: December 13, 2022
    Assignee: GM Global Technology Operations LLC
    Inventors: Alfred Zhang, Gayatri V. Dadheech, Jing Gao, Brian J. Koch
  • Publication number: 20220294038
    Abstract: A method of making a reference electrode assembly for an electrochemical cell according to various aspects of the present disclosure includes providing a subassembly including a separator layer and a current collector layer coupled to the separator layer. The method further includes providing an electrode ink including an electroactive material, a binder, and a solvent. The method further includes creating a reference electrode precursor by applying an electroactive precursor layer to the current collector layer. The electroactive precursor layer covers greater than or equal to about 90% of a superficial surface area of a surface of the current collector layer. The electroactive precursor layer includes the electrode ink. The method further includes creating the reference electrode assembly by drying the electroactive precursor layer to remove at least a portion of the solvent, thereby forming an electroactive layer. The electroactive layer is solid and porous.
    Type: Application
    Filed: May 24, 2022
    Publication date: September 15, 2022
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Jing GAO, Brian J. KOCH, Zhe LI, Alfred ZHANG, Gayatri V. DADHEECH
  • Publication number: 20220285748
    Abstract: A method of making a reference electrode assembly for an electrochemical cell according to various aspects of the present disclosure includes providing a subassembly including a separator layer and a current collector layer coupled to the separator layer. The method further includes providing an electrode ink including an electroactive material, a binder, and a solvent. The method further includes creating a reference electrode precursor by applying an electroactive precursor layer to the current collector layer. The electroactive precursor layer covers greater than or equal to about 90% of a superficial surface area of a surface of the current collector layer. The electroactive precursor layer includes the electrode ink. The method further includes creating the reference electrode assembly by drying the electroactive precursor layer to remove at least a portion of the solvent, thereby forming an electroactive layer. The electroactive layer is solid and porous.
    Type: Application
    Filed: May 24, 2022
    Publication date: September 8, 2022
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Jing GAO, Brian J. KOCH, Zhe LI, Alfred ZHANG, Gayatri V. DADHEECH
  • Publication number: 20220285747
    Abstract: A method of making a reference electrode assembly for an electrochemical cell according to various aspects of the present disclosure includes providing a subassembly including a separator layer and a current collector layer coupled to the separator layer. The method further includes providing an electrode ink including an electroactive material, a binder, and a solvent. The method further includes creating a reference electrode precursor by applying an electroactive precursor layer to the current collector layer. The electroactive precursor layer covers greater than or equal to about 90% of a superficial surface area of a surface of the current collector layer. The electroactive precursor layer includes the electrode ink. The method further includes creating the reference electrode assembly by drying the electroactive precursor layer to remove at least a portion of the solvent, thereby forming an electroactive layer. The electroactive layer is solid and porous.
    Type: Application
    Filed: May 24, 2022
    Publication date: September 8, 2022
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Jing GAO, Brian J. KOCH, Zhe LI, Alfred ZHANG, Gayatri V. DADHEECH
  • Patent number: 11374268
    Abstract: A method of making a reference electrode assembly for an electrochemical cell according to various aspects of the present disclosure includes providing a subassembly including a separator layer and a current collector layer coupled to the separator layer. The method further includes providing an electrode ink including an electroactive material, a binder, and a solvent. The method further includes creating a reference electrode precursor by applying an electroactive precursor layer to the current collector layer. The electroactive precursor layer covers greater than or equal to about 90% of a superficial surface area of a surface of the current collector layer. The electroactive precursor layer includes the electrode ink. The method further includes creating the reference electrode assembly by drying the electroactive precursor layer to remove at least a portion of the solvent, thereby forming an electroactive layer. The electroactive layer is solid and porous.
    Type: Grant
    Filed: September 20, 2019
    Date of Patent: June 28, 2022
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Jing Gao, Brian J. Koch, Zhe Li, Alfred Zhang, Gayatri V. Dadheech
  • Patent number: 11300626
    Abstract: A method for battery capacity estimation is provided. The method includes, within a computerized processor, monitoring a sensor operable to gather data regarding a battery, determining a voltage-based state of charge for the battery based upon the data from the sensor, determining a capacity degradation value for the battery based upon the data from the sensor, determining an integrated current value through Coulomb counting based upon the data from the sensor, determining a predicted battery state of charge for the battery based upon the capacity degradation value and the integrated current value, processing the voltage-based state of charge and the predicted battery state of charge using a Kalman filter to generate an updated overall battery capacity estimate, and using the updated overall battery capacity estimate to control management of the battery.
    Type: Grant
    Filed: January 15, 2020
    Date of Patent: April 12, 2022
    Assignee: GM Global Technology Operations LLC
    Inventors: Charles W. Wampler, Alfred Zhang
  • Patent number: 11245105
    Abstract: A method of manufacturing a component for a reference electrode assembly according to various aspects of the present disclosure includes providing a separator having first and second opposing surfaces. The method further includes sputtering a first current collector layer to the first surface via magnetron or ion beam sputtering deposition. A porosity of the separator is substantially unchanged by the sputtering. In one aspect, the method further includes sputtering a second current collector layer to the second surface via magnetron or ion beam sputtering deposition. In one aspect, the first current collector layer includes nickel and defines a first thickness of greater than or equal to about 200 nm to less than or equal to about 300 nm and the second current collector layer includes gold and defines a second thickness of greater than or equal to about 25 nm to less than or equal to about 100 nm.
    Type: Grant
    Filed: September 20, 2019
    Date of Patent: February 8, 2022
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Gayatri V. Dadheech, Brian J. Koch, Alfred Zhang, Robert S. Conell, Jing Gao
  • Publication number: 20210247242
    Abstract: A temperature sensor for a battery cell of a rechargeable battery is described, and includes a resistive sensing element, a first electrode, and a second electrode. The resistive sensing element, the first electrode, and the second electrode are affixed to a porous separator. The porous separator is interposed between an anode and a cathode of the battery cell. The resistive sensing element is electrically connected in series between the first electrode and the second electrode, and the resistive sensing element, the first electrode and the second electrode are affixed onto the separator as film layers, and are porous.
    Type: Application
    Filed: February 12, 2020
    Publication date: August 12, 2021
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Alfred Zhang, Gayatri V. Dadheech, Jing Gao, Brian J. Koch
  • Publication number: 20210239762
    Abstract: An apparatus and method for tracking a battery cell is disclosed, for a device having one or more sensors and a controller with a processor and tangible, non-transitory memory. The method includes obtaining respective sensor data relative to an anode and a cathode. A predicted anode capacity and predicted cathode capacity are determined based on the respective sensor data. The predicted anode capacity and predicted cathode capacity each have a respective variance value. An updated set of variables and updated respective variance values are generated based in part on the predicted anode capacity, the predicted cathode capacity and a measured equilibrium voltage, via a Kalman filter module executed by the controller. The updated set of variables include an updated anode capacity and an updated cathode capacity. Operation of the device is controlled based in part on the updated set of variables and updated respective variance values.
    Type: Application
    Filed: February 5, 2020
    Publication date: August 5, 2021
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Alfred Zhang, Charles W. Wampler
  • Publication number: 20210215768
    Abstract: A method for battery capacity estimation is provided. The method includes monitoring a sensor, collecting a plurality of data points including a voltage-based state of charge value and an integrated current value, defining within the data points a first data set collected during a first time period and a second data set collected during a second time period, determining an integrated current error related to the second data set, comparing the integrated current error related to the second data set to a threshold integrated current error. When the error related to the second data set exceeds the threshold, the method further includes resetting the second data set based upon an integrated current value from the first time period. The method further includes combining the data sets to create a combined data set and determining a voltage slope capacity estimate as a change in integrated current versus voltage-based state of charge.
    Type: Application
    Filed: January 15, 2020
    Publication date: July 15, 2021
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Alfred Zhang, Justin Bunnell, Garrett M. Seeman, Jeffrey S. Piasecki, Charles W. Wampler, Brian J. Koch, Jing Gao, Jeffrey A. Bednar, Xiumei Guo, Justin R. McDade
  • Publication number: 20210215770
    Abstract: A method for battery capacity estimation is provided. The method includes, within a computerized processor, monitoring a sensor operable to gather data regarding a battery, determining a voltage-based state of charge for the battery based upon the data from the sensor, determining a capacity degradation value for the battery based upon the data from the sensor, determining an integrated current value through Coulomb counting based upon the data from the sensor, determining a predicted battery state of charge for the battery based upon the capacity degradation value and the integrated current value, processing the voltage-based state of charge and the predicted battery state of charge using a Kalman filter to generate an updated overall battery capacity estimate, and using the updated overall battery capacity estimate to control management of the battery.
    Type: Application
    Filed: January 15, 2020
    Publication date: July 15, 2021
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Charles W. Wampler, Alfred Zhang
  • Publication number: 20210091369
    Abstract: A method of manufacturing a component for a reference electrode assembly according to various aspects of the present disclosure includes providing a separator having first and second opposing surfaces. The method further includes sputtering a first current collector layer to the first surface via magnetron or ion beam sputtering deposition. A porosity of the separator is substantially unchanged by the sputtering. In one aspect, the method further includes sputtering a second current collector layer to the second surface via magnetron or ion beam sputtering deposition. In one aspect, the first current collector layer includes nickel and defines a first thickness of greater than or equal to about 200 nm to less than or equal to about 300 nm and the second current collector layer includes gold and defines a second thickness of greater than or equal to about 25 nm to less than or equal to about 100 nm.
    Type: Application
    Filed: September 20, 2019
    Publication date: March 25, 2021
    Inventors: Gayatri V. DADHEECH, Brian J. KOCH, Alfred ZHANG, Robert S. CONELL, Jing GAO