Patents by Inventor Ali Shakouri

Ali Shakouri has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6552256
    Abstract: A multi-stage cooler is formed from monolithically integrated thermionic and thermoelectric coolers, wherein the thermionic and thermoelectric coolers each have a separate electrical connection and a common ground, thereby forming a three terminal device. The thermionic cooler is comprised of a superlattice barrier surrounded by cathode and anode layers grown onto an appropriate substrate, one or more metal contacts with a finite surface area deposited on top of the cathode layer, and one or more mesas of different areas formed by etching around the contacts to the anode layer. The thermoelectric cooler is defined by metal contacts deposited on the anode layer or the substrate itself. A backside metal is deposited on the substrate for connecting to the common ground.
    Type: Grant
    Filed: March 6, 2001
    Date of Patent: April 22, 2003
    Assignee: The Regents of the University of California
    Inventors: Ali Shakouri, Christopher J. LaBounty, John E. Bowers
  • Publication number: 20020175408
    Abstract: One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as “nanowires”, include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).
    Type: Application
    Filed: March 29, 2002
    Publication date: November 28, 2002
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Arun Majumdar, Ali Shakouri, Timothy D. Sands, Peidong Yang, Samuel S. Mao, Richard E. Russo, Henning Feick, Eicke R. Weber, Hannes Kind, Michael Huang, Haoquan Yan, Yiying Wu, Rong Fan
  • Publication number: 20020172820
    Abstract: One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as “nanowires”, include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).
    Type: Application
    Filed: March 29, 2002
    Publication date: November 21, 2002
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Arun Majumdar, Ali Shakouri, Timothy D. Sands, Peidong Yang, Samuel S. Mao, Richard E. Russo, Henning Feick, Eicke R. Weber, Hannes Kind, Michael Huang, Haoquan Yan, Yiying Wu, Rong Fan
  • Publication number: 20020126732
    Abstract: Methods and apparatus for non-contact thermal measurement which are capable of providing sub micron surface thermal characterization of samples, such as active semiconductor devices. The method obtains thermal image information by reflecting a light from a surface of a device in synchronous with the modulation of the thermal excitation and then acquiring and processing an AC-coupled thermoreflective image. The method may be utilized for making measurements using different positioning techniques, such as point measurements, surface scanning, two-dimensional imaging, and combinations thereof. A superresolution method is also described for increasing the resultant image resolution, based on multiple images with fractional pixel offsets, without the need to increase the resolution of the image detectors being utilized.
    Type: Application
    Filed: January 4, 2002
    Publication date: September 12, 2002
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Ali Shakouri, Peyman Milanfar, Kenneth Pedrotti, James Christofferson
  • Patent number: 6403874
    Abstract: A heterostructure thermionic cooler and a method for making thermionic coolers, employing a barrier layer of varying conduction bandedge for n-type material, or varying valence bandedge for p-type material, that is placed between two layers of material. The barrier layer bandedge is at least kBT higher than the Fermi level of the semiconductor layer, which allows only selected, “hot” electrons, or electrons of high enough energy, across the barrier. The barrier layer is constructed to have an internal electric field such that the electrons that make it over the initial barrier are assisted in travel to the anode. Once electrons drop to the energy level of the anode, they lose energy to the lattice, thus heating the lattice at the anode. The barrier height of the barrier layer is high enough to prevent the electrons from traveling in the reverse direction.
    Type: Grant
    Filed: November 17, 1999
    Date of Patent: June 11, 2002
    Assignee: The Regents of the University of California
    Inventors: Ali Shakouri, John E. Bowers
  • Patent number: 6385376
    Abstract: A vertical directional coupler fabricated using wafer fusion with a very short coupling length for fabrication of switches, filters and other electro-optic devices. Using the fused vertical coupler, planar waveguides can be fabricated on two different substrates in a three-dimensional structure in which there is vertical coupling between arrays through fused regions. Switches, including crossbar switches based on coupling between independent arrays of waveguides, as well as filters, can be fabricated.
    Type: Grant
    Filed: October 22, 1999
    Date of Patent: May 7, 2002
    Assignee: The Regents of the University of California
    Inventors: John E. Bowers, Bin Liu, Patrick Abraham, Boo-Gyoun Kim, Ali Shakouri
  • Publication number: 20020033188
    Abstract: A heterostructure thermionic cooler and a method for making thermionic coolers, employing a barrier layer of varying conduction bandedge for n-type material, or varying valence bandedge for p-type material, that is placed between two layers of material. The barrier layer has a high enough barrier for the cold side to only allow “hot” electrons, or electrons of high enough energy, across the barrier. The barrier layer is constructed to have an internal electric field such that the electrons that make it over the initial barrier are assisted in travel to the anode. Once electrons drop to the energy level of the anode, they lose energy to the lattice, thus heating the lattice at the anode. The barrier height of the barrier layer is high enough to prevent the electrons from traveling in the reverse direction.
    Type: Application
    Filed: October 12, 2001
    Publication date: March 21, 2002
    Inventors: Ali Shakouri, John E. Bowers
  • Publication number: 20010050099
    Abstract: A multi-stage cooler is formed from monolithically integrated thermionic and thermoelectric coolers, wherein the thermionic and thermoelectric coolers each have a separate electrical connection and a common ground, thereby forming a three terminal device. The thermionic cooler is comprised of a superlattice barrier surrounded by cathode and anode layers grown onto an appropriate substrate, one or more metal contacts with a finite surface area deposited on top of the cathode layer, and one or more mesas of different areas formed by etching around the contacts to the anode layer. The thermoelectric cooler is defined by metal contacts deposited on the anode layer or the substrate itself. A backside metal is deposited on the substrate for connecting to the common ground.
    Type: Application
    Filed: March 6, 2001
    Publication date: December 13, 2001
    Inventors: Ali Shakouri, Christopher J. Labounty, John E. Bowers
  • Patent number: 6323414
    Abstract: A heterostructure thermionic cooler and a method for making thermionic coolers, employing a barrier layer of varying conduction bandedge for n-type material, or varying valence bandedge for p-type material, that is placed between two layers of material. The barrier layer has a high enough barrier for the cold side to only allow “hot” electrons, or electrons of high enough energy, across the barrier. The barrier layer is constructed to have an internal electric field such that the electrons that make it over the initial barrier are assisted in travel to the anode. Once electrons drop to the energy level of the anode, they lose energy to the lattice, thus heating the lattice at the anode. The barrier height of the barrier layer is high enough to prevent the electrons from traveling in the reverse direction.
    Type: Grant
    Filed: April 12, 2000
    Date of Patent: November 27, 2001
    Assignee: The Regents of the University of California
    Inventors: Ali Shakouri, John E. Bowers
  • Patent number: 6060331
    Abstract: A heterostructure thermionic cooler and a method for making thermionic coolers, employing a barrier layer of varying conduction bandedge for n-type material, or varying valence bandedge for p-type material, that is placed between two layers of material. The barrier layer has a high enough barrier for the cold side to only allow "hot" electrons, or electrons of high enough energy, across the barrier. The barrier layer is constructed to have an internal electric field such that the electrons that make it over the initial barrier are assisted in travel to the anode. Once electrons drop to the energy level of the anode, they lose energy to the lattice, thus heating the lattice at the anode. The barrier height of the barrier layer is high enough to prevent the electrons from traveling in the reverse direction.
    Type: Grant
    Filed: March 29, 1999
    Date of Patent: May 9, 2000
    Assignee: The Regents of the University of California
    Inventors: Ali Shakouri, John E. Bowers
  • Patent number: 5955772
    Abstract: A heterostructure thermionic cooler and a method for making thermionic coolers, employing a barrier layer of varying conduction bandedge for n-type material, or varying valence bandedge for p-type material, that is placed between two layers of material. The barrier layer has a high enough barrier for the cold side to only allow "hot" electrons, or electrons of high enough energy, across the barrier. The barrier layer is constructed to have an internal electric field such that the electrons that make it over the initial barrier are assisted in travel to the anode. Once electrons drop to the energy level of the anode, they lose energy to the lattice, thus heating the lattice at the anode. The barrier height of the barrier layer is high enough to prevent the electrons from traveling in the reverse direction.
    Type: Grant
    Filed: December 17, 1996
    Date of Patent: September 21, 1999
    Assignee: The Regents of the University of California
    Inventors: Ali Shakouri, John E. Bowers