Patents by Inventor Alireza Malek Tabrizi

Alireza Malek Tabrizi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220175581
    Abstract: A method implemented in an ophthalmic surgical laser system that employs a resonant scanner, scan line rotator, and XY- and Z-scanners, for forming a corneal flap in a patient's eye with improved bubble management during each step of the flap creation process. A pocket cut is formed first below bed level, followed by the bed connected to the pocket cut, then by a side cut extending from the bed to the anterior corneal surface. The pocket cut includes a pocket region located below the bed level and a ramp region connecting the pocket region to the bed. The bed is formed by a hinge cut and a first ring cut at lower laser energies, followed by a bed cut and then a second ring cut, which ensures that any location in the flap bed is cut twice to minimize tissue adhesion. The side cut is formed by multiple side-cut layers at different depths which are joined together. All cuts are formed by scanning a laser scan line generated by the resonant scanner.
    Type: Application
    Filed: December 2, 2021
    Publication date: June 9, 2022
    Inventors: Andrew Voorhees, Harvey Liu, Hong Fu, Alireza Malek Tabrizi, Nima Khatibzadeh, Deepali Mehta-Hurt, Cynthia Villanueva, James Hill, Alisyn Facemire
  • Publication number: 20220168144
    Abstract: Embodiments generally relate to ophthalmic laser procedures and, more particularly, to systems and methods for lenticular laser incision. In an embodiment, an ophthalmic surgical laser system comprises a laser delivery system for delivering a pulsed laser beam to a target in a subject's eye, an XY-scan device to deflect the pulsed laser beam, a Z-scan device to modify a depth of a focus of the pulsed laser beam, and a controller configured to form a top lenticular incision and a bottom lenticular incision of a lens in a corneal stroma.
    Type: Application
    Filed: February 15, 2022
    Publication date: June 2, 2022
    Inventors: Alireza Malek Tabrizi, Hong Fu, James E. Hill, Mohammad Saidur Rahaman, Zenon Witowski
  • Publication number: 20220096274
    Abstract: A corneal lenticule extraction procedure provides convenient re-treatment options when treatment interruptions occur. The procedure is executed by an ophthalmic laser system according to a programmed treatment plan, which defines an entry cut, an optional ring cut, a bottom lenticule incision having an optical zone, and a flat top bed incision. If an interruption occurs during the entry cut, the treatment plan is re-aligned with the partially formed entry cut and continued, or with a new entry cut placed at a different angular position. If an interruption occurs during the ring cut, the treatment plan is revised to define a larger ring cut concentric with the partially formed ring cut. If an interruption occurs during the bottom or top incision, the depth of the partially formed bottom or top incision is measured, and the treatment plan is revised to form a deeper bottom incision or a shallower top incision, respectively.
    Type: Application
    Filed: September 28, 2021
    Publication date: March 31, 2022
    Inventors: Hong Fu, Alireza Malek Tabrizi
  • Publication number: 20220062049
    Abstract: A method for forming deep corneal lamellar incision parallel to the posterior corneal surface when the eye is docked to the patient interface. A lower-energy detecting beam generated by the same pulsed laser that generates the higher-energy treatment laser beam is utilized to measure the posterior corneal surface profile. The detecting beam is scanned in the eye according to a first 3-dimensional scan pattern, while intensity of the back-reflected light is measured by a light intensity detector. The first scan pattern may be a spiral pattern in the X-Y plane coupled with a Z direction oscillation function. Peaks of the light intensity signal are detected, and corresponding spatial positions of the focus point are obtained; a known offset distance is added to the depth value to obtain the posterior corneal surface profile. Based thereon, the treatment laser beam is scanned in the eye to form the deep corneal lamellar incision.
    Type: Application
    Filed: August 26, 2021
    Publication date: March 3, 2022
    Inventors: Hong Fu, Mohammad Saidur Rahaman, Alireza Malek Tabrizi, Zenon Witowski, Griffith Altmann
  • Publication number: 20220054316
    Abstract: In laser-assisted corneal lenticule extraction procedures, the lenticule incision profile includes anterior and posterior lenticule incisions, with one or more of the following features: plano transition zone outside the optical zone, to improve mating of anterior and posterior incision surfaces after lenticule extraction; shallow arcuate incisions above the anterior incision and near the lenticule edge, to improve surface mating; separate ring cut intersecting the anterior and posterior incisions in the transition zone, to reduce tissue bridges and minimize tear at the lenticule edges and facilitate easy lenticule extraction; larger posterior incision, which includes a pocket zone outside the lenticule edge, for better surface mating and bubble management during cutting; and a separate ring shaped pocket cut intersecting the pocket zone of the posterior incision, for bubble management.
    Type: Application
    Filed: August 17, 2021
    Publication date: February 24, 2022
    Inventors: Andrew Voorhees, Alireza Malek Tabrizi, Hong Fu, Cynthia Villanueva, Nima Khatibzadeh, Deepali Mehta-Hurt, James Hill, Li Chen, Li Bing
  • Patent number: 11253398
    Abstract: Embodiments generally relate to ophthalmic laser procedures and, more particularly, to systems and methods for lenticular laser incision. In an embodiment, an ophthalmic surgical laser system comprises a laser delivery system for delivering a pulsed laser beam to a target in a subject's eye, an XY-scan device to deflect the pulsed laser beam, a Z-scan device to modify a depth of a focus of the pulsed laser beam, and a controller configured to form a top lenticular incision and a bottom lenticular incision of a lens in a corneal stroma.
    Type: Grant
    Filed: June 22, 2017
    Date of Patent: February 22, 2022
    Assignee: AMO Development, LLC
    Inventors: Alireza Malek Tabrizi, Hong Fu, James E. Hill, Mohammad Saidur Rahaman, Zenon Witowski
  • Publication number: 20210401624
    Abstract: A laser surgical system comprises a laser source, scanners, delivery optics, and a computer. The laser source generates a beam of femtosecond laser pulses. The scanners direct focus spots of the beam towards points of a cornea. The delivery optics focuses the focus spots at the points of the cornea. The computer creates an incision in the cornea by instructing the optics and scanners to: direct and focus the focus spots from a posterior corneal surface, through a convex curve and a concave curve, to an anterior corneal surface to form an S-curve incision with a posterior end and an anterior end. The S-curve incision has a substantially non-planar rectangular shape with a longer side that extends from the posterior end to the anterior end and defines a longer direction. A cross-section of the incision in the longer direction exhibits the convex curve and the concave curve.
    Type: Application
    Filed: June 24, 2021
    Publication date: December 30, 2021
    Inventors: Zsolt Bor, Imre Hegedus, Keith Watanabe, Alireza Malek Tabrizi
  • Publication number: 20210346202
    Abstract: Embodiments generally relate to ophthalmic laser procedures and, more particularly, to systems and methods for lenticular laser incisions to form a top lenticular incision, a bottom lenticular incision of a lens in the subject's eye, an added shape between the top and bottom incisions where the added shape has no corrective power and a transition ring bisecting both the top and bottom lenticular incisions.
    Type: Application
    Filed: July 19, 2021
    Publication date: November 11, 2021
    Applicant: AMO Development, LLC
    Inventors: Alireza Malek Tabrizi, Hong Fu, James E. Hill
  • Publication number: 20210298958
    Abstract: Embodiments of this invention generally relate to ophthalmic laser procedures and, more particularly, to systems and methods for creating synchronized three-dimensional laser incisions. In an embodiment, an ophthalmic surgical laser system comprises a laser delivery system for delivering a pulsed laser beam to a target in a subject's eye, an XY-scan device to deflect the pulsed laser beam, a Z-scan device to modify a depth of a focus of the pulsed laser beam, and a controller configured to synchronize an oscillation of the XY-scan device and an oscillation of the Z-device to form an angled three-dimensional laser tissue dissection.
    Type: Application
    Filed: June 11, 2021
    Publication date: September 30, 2021
    Inventors: Hong Fu, Patrick De Guzman, Robert Heitel, Alireza Malek Tabrizi
  • Patent number: 11123224
    Abstract: A compact system for performing laser ophthalmic surgery is disclosed. The systems and methods may be used to measure corneal thickness or other anatomy to prepare a treatment plan for any of numerous treatments, such as LASIK, PRK, intra stromal lenticular lens incisions, cornea replacement, or any other treatment. By using a reduced power femtosecond laser backscatter may be measured to calculate distances such as distances between an interior boundary and an exterior boundary of a cornea or other tissue.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: September 21, 2021
    Assignee: AMO Development, LLC
    Inventors: Alireza Malek Tabrizi, Harvey I. Liu, Hong Fu
  • Patent number: 11065156
    Abstract: Embodiments generally relate to ophthalmic laser procedures and, more particularly, to systems and methods for lenticular laser incisions to form a top lenticular incision, a bottom lenticular incision of a lens in the subject's eye, an added shape between the top and bottom incisions where the added shape has no corrective power and a transition ring bisecting both the top and bottom lenticular incisions.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: July 20, 2021
    Assignee: AMO DEVELOPMENT, LLC
    Inventors: Alireza Malek Tabrizi, Hong Fu, James E. Hill
  • Publication number: 20210196518
    Abstract: An ophthalmic surgical laser system includes a laser beam delivery system having multiple moving components for scanning a laser focal spot in a target eye tissue, where the motors that actuate some of the moving components are equipped with respective digital encoders that measure actual motor positions. A controller controls the laser beam delivery system to perform a treatment scan, while recording the actual motor positions from the encoders. Using the actual motor positions and a calibration relationship between actual motor positions and delivered laser focal spot positions in a target tissue, a laser cutting pattern is digitally reconstructed, which represents the incisions actually achieved by the treatment scan. The reconstructed laser cutting pattern may be visually inspected and further analyzed, e.g. to compare it to the intended laser cutting pattern used to execute the treatment scan, to calculate the achieved refractive correction, or to simulate tissue resetting.
    Type: Application
    Filed: November 23, 2020
    Publication date: July 1, 2021
    Inventors: Paul Gray, Guangming Dai, Alireza Malek Tabrizi, Hong Fu
  • Patent number: 11039959
    Abstract: An ophthalmic laser procedure for forming a lenticule in a cornea and extracting the lenticule from the cornea to accomplish vision correction. An ophthalmic laser system is used to form top and bottom lenticule incisions defining a lenticule in between, and further to form top and/or bottom entry cuts that respectively end unambiguously near the top or bottom lenticule surface. The bottom entry cut intersects both the top and bottom lenticule incisions but ends near the bottom lenticule incision. The entry cuts allow the surgeon to insert a surgical tool which reaches the intended top or bottom lenticule surface without ambiguity. The lenticule has an optical zone in the center that defines the optical power of the lenticule, and a transition zone in the periphery, where the end points of the entry cuts are located in the transition zone.
    Type: Grant
    Filed: September 4, 2018
    Date of Patent: June 22, 2021
    Assignee: AMO Development, LLC
    Inventors: Hong Fu, Alireza Malek Tabrizi, Nima Khatibzadeh, James Hill
  • Patent number: 11033431
    Abstract: Embodiments of this invention generally relate to ophthalmic laser procedures and, more particularly, to systems and methods for creating synchronized three-dimensional laser incisions. In an embodiment, an ophthalmic surgical laser system comprises a laser delivery system for delivering a pulsed laser beam to a target in a subject's eye, an XY-scan device to deflect the pulsed laser beam, a Z-scan device to modify a depth of a focus of the pulsed laser beam, and a controller configured to synchronize an oscillation of the XY-scan device and an oscillation of the Z-device to form an angled three-dimensional laser tissue dissection.
    Type: Grant
    Filed: October 28, 2019
    Date of Patent: June 15, 2021
    Assignee: AMO Development, LLC
    Inventors: Hong Fu, Patrick De Guzman, Robert Heitel, Alireza Malek Tabrizi
  • Publication number: 20210128358
    Abstract: An ophthalmic surgical laser system and method for forming a lenticule in a subject's eye using “fast-scan-slow-sweep” scanning scheme. A high frequency scanner forms a fast scan line, which is placed by the XY and Z scanners at a location tangential to a parallel of latitude of the surface of the lenticule. The XY and Z scanners then move the scan line in a slow sweep trajectory along a meridian of longitude of the surface of the lenticule in one sweep. Multiple sweeps are performed along different meridians to form the entire lenticule surface, and a prism is used to change the orientation of the scan line of the high frequency scanner between successive sweeps. In each sweep, the sweeping speed along the meridian is variable, being the slowest at the edge of the lenticule and the fastest near the apex.
    Type: Application
    Filed: November 11, 2020
    Publication date: May 6, 2021
    Inventors: Hong Fu, Alireza Malek Tabrizi, Nima Khatibzadeh
  • Publication number: 20210015668
    Abstract: An ophthalmic surgical laser system includes: a laser that produces a pulsed laser beam having a pulse energy and pulse repetition rate; a high frequency fast scanner; an XY-scan device; a Z-scan device; and a controller. The controller controls the high frequency scanner to produce a scan line having a scan width; controls the XY-scan device and the Z-scan device to carry out of first sweep of the scan line in a first sweep direction and to carry out a second sweep of the scan line in a second sweep direction that is not parallel to the first sweep direction thereby defining an overlap region. At least one of the pulse energy, repetition rate, XY-scan speed, and the scan width is varied so as to accelerate the cutting speed and reduce the exposure of ophthalmic tissue in the overlap region to multiple exposures of laser pulses configured to modify ophthalmic tissue.
    Type: Application
    Filed: October 2, 2020
    Publication date: January 21, 2021
    Inventors: Alireza Malek Tabrizi, Hong Fu, James E. Hill, Zenon Witowski
  • Patent number: 10842674
    Abstract: An ophthalmic surgical laser system and method for forming a lenticule in a subject's eye using “fast-scan-slow-sweep” scanning scheme. A high frequency scanner forms a fast scan line, which is placed by the XY and Z scanners at a location tangential to a parallel of latitude of the surface of the lenticule. The XY and Z scanners then move the scan line in a slow sweep trajectory along a meridian of longitude of the surface of the lenticule in one sweep. Multiple sweeps are performed along different meridians to form the entire lenticule surface, and a prism is used to change the orientation of the scan line of the high frequency scanner between successive sweeps. In each sweep, the sweeping speed along the meridian is variable, being the slowest at the edge of the lenticule and the fastest near the apex.
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: November 24, 2020
    Assignee: AMO Development, LLC
    Inventors: Hong Fu, Alireza Malek Tabrizi, Nima Khatibzadeh
  • Publication number: 20200337903
    Abstract: Embodiments of this invention generally relate to ophthalmic laser procedures and, more particularly, to systems and methods for lenticular laser incision. In an embodiment, an ophthalmic surgical laser system comprises a laser delivery system for delivering a pulsed laser beam to a target in a subject's eye, an XY-scan device to deflect the pulsed laser beam, a Z-scan device to modify a depth of a focus of the pulsed laser beam, and a controller configured to form a top lenticular incision and a bottom lenticular incision of a lens in the subject's eye, where each of the top and bottom lenticular incision includes a center concave portion and an edge transition portion that has a smooth convex shape and is smoothly joined to the center concave portion.
    Type: Application
    Filed: July 8, 2020
    Publication date: October 29, 2020
    Inventors: Hong Fu, Alireza Malek Tabrizi
  • Patent number: 10792188
    Abstract: An ophthalmic surgical laser system includes: a laser that produces a pulsed laser beam having a pulse energy and pulse repetition rate; a high frequency fast scanner; an XY-scan device; a Z-scan device; and a controller. The controller controls the high frequency scanner to produce a scan line having a scan width; controls the XY-scan device and the Z-scan device to carry out of first sweep of the scan line in a first sweep direction and to carry out a second sweep of the scan line in a second sweep direction that is not parallel to the first sweep direction thereby defining an overlap region. At least one of the pulse energy, repetition rate, XY-scan speed, and the scan width is varied so as to accelerate the cutting speed and reduce the exposure of ophthalmic tissue in the overlap region to multiple exposures of laser pulses configured to modify ophthalmic tissue.
    Type: Grant
    Filed: October 12, 2017
    Date of Patent: October 6, 2020
    Assignee: AMO Development, LLC
    Inventors: Alireza Malek Tabrizi, Hong Fu, James E. Hill, Zenon Witowski
  • Patent number: 10709611
    Abstract: Embodiments of this invention generally relate to ophthalmic laser procedures and, more particularly, to systems and methods for lenticular laser incision. In an embodiment, an ophthalmic surgical laser system comprises a laser delivery system for delivering a pulsed laser beam to a target in a subject's eye, an XY-scan device to deflect the pulsed laser beam, a Z-scan device to modify a depth of a focus of the pulsed laser beam, and a controller configured to form a top lenticular incision and a bottom lenticular incision of a lens in the subject's eye, where each of the top and bottom lenticular incision includes a center spherical portion and an edge transition portion that is not located on the same spherical surface as the spherical portion but has a steeper shape.
    Type: Grant
    Filed: August 22, 2018
    Date of Patent: July 14, 2020
    Assignee: AMO Development, LLC
    Inventors: Hong Fu, Alireza Malek Tabrizi