Patents by Inventor Alireza Malek Tabrizi

Alireza Malek Tabrizi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200113737
    Abstract: Embodiments of this invention generally relate to ophthalmic laser procedures and, more particularly, to systems and methods for creating synchronized three-dimensional laser incisions. In an embodiment, an ophthalmic surgical laser system comprises a laser delivery system for delivering a pulsed laser beam to a target in a subject's eye, an XY-scan device to deflect the pulsed laser beam, a Z-scan device to modify a depth of a focus of the pulsed laser beam, and a controller configured to synchronize an oscillation of the XY-scan device and an oscillation of the Z-device to form an angled three-dimensional laser tissue dissection.
    Type: Application
    Filed: October 28, 2019
    Publication date: April 16, 2020
    Inventors: Hong Fu, Patrick De Guzman, Robert Heitel, Alireza Malek Tabrizi
  • Publication number: 20200069470
    Abstract: An ophthalmic laser procedure for forming a lenticule in a cornea and extracting the lenticule from the cornea to accomplish vision correction. An ophthalmic laser system is used to form top and bottom lenticule incisions defining a lenticule in between, and further to form top and/or bottom entry cuts that respectively end unambiguously near the top or bottom lenticule surface. The bottom entry cut intersects both the top and bottom lenticule incisions but ends near the bottom lenticule incision. The entry cuts allow the surgeon to insert a surgical tool which reaches the intended top or bottom lenticule surface without ambiguity. The lenticule has an optical zone in the center that defines the optical power of the lenticule, and a transition zone in the periphery, where the end points of the entry cuts are located in the transition zone.
    Type: Application
    Filed: September 4, 2018
    Publication date: March 5, 2020
    Inventors: Hong Fu, Alireza Malek Tabrizi, Nima Khatibzadeh, James Hill
  • Publication number: 20200046558
    Abstract: An ophthalmic surgical laser system and method for forming a lenticule in a subject's eye using “fast-scan-slow-sweep” scanning scheme. A high frequency scanner forms a fast scan line, which is placed by the XY and Z scanners at a location tangential to a parallel of latitude of the surface of the lenticule. The XY and Z scanners then move the scan line in a slow sweep trajectory along a meridian of longitude of the surface of the lenticule in one sweep. Multiple sweeps are performed along different meridians to form the entire lenticule surface, and a prism is used to change the orientation of the scan line of the high frequency scanner between successive sweeps. In each sweep, the sweeping speed along the meridian is variable, being the slowest at the edge of the lenticule and the fastest near the apex.
    Type: Application
    Filed: August 7, 2018
    Publication date: February 13, 2020
    Inventors: Hong Fu, Alireza Malek Tabrizi, Nima Khatibzadeh
  • Publication number: 20190388270
    Abstract: A compact system for performing laser ophthalmic surgery is disclosed. The systems and methods may be used to measure corneal thickness or other anatomy to prepare a treatment plan for any of numerous treatments, such as LASIK, PRK, intra stromal lenticular lens incisions, cornea replacement, or any other treatment. By using a reduced power femtosecond laser backscatter may be measured to calculate distances such as distances between an interior boundary and an exterior boundary of a cornea or other tissue.
    Type: Application
    Filed: June 28, 2019
    Publication date: December 26, 2019
    Inventors: Alireza Malek Tabrizi, Harvey I. Liu, Hong Fu
  • Patent number: 10456297
    Abstract: Embodiments of this invention generally relate to ophthalmic laser procedures and, more particularly, to systems and methods for creating synchronized three-dimensional laser incisions. In an embodiment, an ophthalmic surgical laser system comprises a laser delivery system for delivering a pulsed laser beam to a target in a subject's eye, an XY-scan device to deflect the pulsed laser beam, a Z-scan device to modify a depth of a focus of the pulsed laser beam, and a controller configured to synchronize an oscillation of the XY-scan device and an oscillation of the Z-device to form an angled three-dimensional laser tissue dissection.
    Type: Grant
    Filed: September 9, 2015
    Date of Patent: October 29, 2019
    Assignee: AMO Development, LLC
    Inventors: Hong Fu, Patrick De Guzman, Robert Heitel, Alireza Malek Tabrizi
  • Patent number: 10363174
    Abstract: A compact system for performing laser ophthalmic surgery is disclosed. The systems and methods may be used to measure corneal thickness or other anatomy to prepare a treatment plan for any of numerous treatments, such as LASIK, PRK, intra stromal lenticular lens incisions, cornea replacement, or any other treatment. By using a reduced power femtosecond laser backscatter may be measured to calculate distances such as distances between an interior boundary and an exterior boundary of a cornea or other tissue.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: July 30, 2019
    Assignee: AMO DEVELOPMENT, LLC
    Inventors: Alireza Malek Tabrizi, Harvey I. Liu, Hong Fu
  • Publication number: 20190110926
    Abstract: An ophthalmic surgical laser system includes: a laser that produces a pulsed laser beam having a pulse energy and pulse repetition rate; a high frequency fast scanner; an XY-scan device; a Z-scan device; and a controller. The controller controls the high frequency scanner to produce a scan line having a scan width; controls the XY-scan device and the Z-scan device to carry out of first sweep of the scan line in a first sweep direction and to carry out a second sweep of the scan line in a second sweep direction that is not parallel to the first sweep direction thereby defining an overlap region. At least one of the pulse energy, repetition rate, XY-scan speed, and the scan width is varied so as to accelerate the cutting speed and reduce the exposure of ophthalmic tissue in the overlap region to multiple exposures of laser pulses configured to modify ophthalmic tissue.
    Type: Application
    Filed: October 12, 2017
    Publication date: April 18, 2019
    Inventors: Alireza Malek Tabrizi, Hong Fu, James E. Hill, Zenon Witowski
  • Publication number: 20190060122
    Abstract: Embodiments of this invention generally relate to ophthalmic laser procedures and, more particularly, to systems and methods for lenticular laser incision. In an embodiment, an ophthalmic surgical laser system comprises a laser delivery system for delivering a pulsed laser beam to a target in a subject's eye, an XY-scan device to deflect the pulsed laser beam, a Z-scan device to modify a depth of a focus of the pulsed laser beam, and a controller configured to form a top lenticular incision and a bottom lenticular incision of a lens in the subject's eye, where each of the top and bottom lenticular incision includes a center spherical portion and an edge transition portion that is not located on the same spherical surface as the spherical portion but has a steeper shape.
    Type: Application
    Filed: August 22, 2018
    Publication date: February 28, 2019
    Inventors: Hong Fu, Alireza Malek Tabrizi
  • Publication number: 20180064577
    Abstract: A compact system for performing laser ophthalmic surgery is disclosed. The systems and methods may be used to measure corneal thickness or other anatomy to prepare a treatment plan for any of numerous treatments, such as LASIK, PRK, intra stromal lenticular lens incisions, cornea replacement, or any other treatment. By using a reduced power femtosecond laser backscatter may be measured to calculate distances such as distances between an interior boundary and an exterior boundary of a cornea or other tissue.
    Type: Application
    Filed: September 8, 2017
    Publication date: March 8, 2018
    Inventors: Alireza Malek Tabrizi, Harvey I. Liu, Hong Fu
  • Publication number: 20180008461
    Abstract: Embodiments generally relate to systems and methods for lenticular laser incisions based on wavefront maps. In an embodiment, a method comprises obtaining a wavefront map of a free eye using wavefront aberrometry to measure a refractive error, obtaining an iris image for the free eye using wavefront aberrometry, determining a free eye cutting profile to cut the cornea based on the wavefront measurement, determining a first translation of the free eye cutting profile based on estimated perturbation of the eye with a docking patient interface, docking the eye to a patient interface of an ultrashort pulsed laser system, obtaining an iris image for the docked eye, determining a second translation of the cutting profile for the docked eye from the free eye, using comparisons between the two iris images, and incising a bottom surface incision in the cornea based on the two translated cutting profiles.
    Type: Application
    Filed: July 7, 2017
    Publication date: January 11, 2018
    Inventors: Hong Fu, Alireza Malek Tabrizi, Dimitri Chernyak, Guangming G. Dai, Daniel R. Neal, Thomas D. Raymond
  • Publication number: 20180000647
    Abstract: Embodiments generally relate to ophthalmic laser procedures and, more particularly, to systems and methods for lenticular laser incisions to form a top lenticular incision, a bottom lenticular incision of a lens in the subject's eye, an added shape between the top and bottom incisions where the added shape has no corrective power and a transition ring bisecting both the top and bottom lenticular incisions.
    Type: Application
    Filed: June 29, 2017
    Publication date: January 4, 2018
    Inventors: Alireza Malek Tabrizi, Hong Fu, James E. Hill
  • Publication number: 20170367883
    Abstract: Embodiments generally relate to ophthalmic laser procedures and, more particularly, to systems and methods for lenticular laser incision. In an embodiment, an ophthalmic surgical laser system comprises a laser delivery system for delivering a pulsed laser beam to a target in a subject's eye, an XY-scan device to deflect the pulsed laser beam, a Z-scan device to modify a depth of a focus of the pulsed laser beam, and a controller configured to form a top lenticular incision and a bottom lenticular incision of a lens in a corneal stroma.
    Type: Application
    Filed: June 22, 2017
    Publication date: December 28, 2017
    Inventors: Alireza Malek Tabrizi, Hong Fu, James E. Hill, Mohammad Saidur Rahaman, Zenon Witowski
  • Publication number: 20160067095
    Abstract: Embodiments of this invention generally relate to ophthalmic laser procedures and, more particularly, to systems and methods for creating synchronized three-dimensional laser incisions. In an embodiment, an ophthalmic surgical laser system comprises a laser delivery system for delivering a pulsed laser beam to a target in a subject's eye, an XY-scan device to deflect the pulsed laser beam, a Z-scan device to modify a depth of a focus of the pulsed laser beam, and a controller configured to synchronize an oscillation of the XY-scan device and an oscillation of the Z-device to form an angled three-dimensional laser tissue dissection.
    Type: Application
    Filed: September 9, 2015
    Publication date: March 10, 2016
    Inventors: Hong Fu, Patrick De Guzman, Robert Heitel, Alireza Malek Tabrizi