Patents by Inventor Allan S. Myerson

Allan S. Myerson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6733586
    Abstract: A method for the high-throughput non-photochemical laser induced nucleation of crystals from aged supersaturated solutions in which short high-intensity laser pulses are used to induce nucleation in an array or sequence aged supersaturated solutions. The laser reduces nucleation time and induces nucleation only in the area where the beam is focused or passes through, resulting in fewer nuclei than would be achieved by spontaneous nucleation. The high-throughput methodologies allow more crystals to grow in a given amount of time.
    Type: Grant
    Filed: August 16, 2002
    Date of Patent: May 11, 2004
    Assignee: Illinois Institute of Technology
    Inventor: Allan S. Myerson
  • Publication number: 20040071619
    Abstract: A method for the recovery of high purity zinc oxide products, and optionally iron-carbon feedstocks, from industrial waste streams containing zinc oxide and/or iron. The waste streams preliminary can be treated by adding carbon and an ammonium chloride solution, separating any undissolved components from the solution, displacing undesired metal ions from the solution using zinc metal, treating the solution to remove therefrom zinc compounds, and further treating the zinc compounds and the undissolved components, as necessary, resulting in the zinc products and the optional iron-carbon feedbacks. Once the zinc oxide has been recovered, the purification process is used to further purify the zinc oxide to obtain zinc oxide which is at least 99.8% pure and which has predeterminable purity and particle characteristics. Various zinc compounds may then be quickly, easily, and economically produced from this recovered zinc oxide.
    Type: Application
    Filed: August 27, 2003
    Publication date: April 15, 2004
    Inventors: Allan S. Myerson, Peter Robinson, Stephan Tabah
  • Patent number: 6696029
    Abstract: A method for the recovery of high purity zinc oxide products, and optionally iron-carbon feedstocks, from industrial waste streams containing zinc oxide and/or iron. The waste streams preliminary can be treated by adding carbon and an ammonium chloride solution, separating any undissolved components from the solution, displacing undesired metal ions from the solution using zinc metal, treating the solution to remove therefrom zinc compounds, and further treating the zinc compounds and the undissolved components, as necessary, resulting in the zinc products and the optional iron-carbon feedbacks. Once the zinc oxide has been recovered, the purification process is used to further purify the zinc oxide to obtain zinc oxide which is at least 99.8% pure and which has predeterminable purity and particle characteristics. Various zinc compounds may then be quickly, easily, and economically produced from this recovered zinc oxide.
    Type: Grant
    Filed: January 29, 1996
    Date of Patent: February 24, 2004
    Inventors: Allan S Myerson, Peter Robinson, Stephan Tabah
  • Patent number: 6645293
    Abstract: Methods for the crystallization of nano-size crystals of molecular organic compounds while operating at a low supersaturation. The methods are based on controlling the domain size available during the crystallization process. In one exemplary method, microcontacted printed self-assembled monolayers (SAMs) with local domain area sizes ranging up to 2500 &mgr;m2 and fabricated SAMs generated from electron beam lithography, are employed to control the size, orientation, phase, and morphology of the crystal. In another exemplary method, a continuous micro-crystallizer having a vessel diameter of 25 microns or less is used to ensure that that the maximum size of the crystals in at least one dimension, ad preferably two dimensions is constrained by the vessel itself. The methods allow control of supersaturation and growth conditions, as well as manageability over crystallinity and polymorphism, and each method's domain size has the potential for further reduction.
    Type: Grant
    Filed: March 7, 2002
    Date of Patent: November 11, 2003
    Assignee: Illinois Institute of Technology
    Inventor: Allan S. Myerson
  • Publication number: 20030170999
    Abstract: Methods for the crystallization of nano-size crystals of molecular organic compounds while operating at a low supersaturation. The methods are based on controlling the domain size available during the crystallization process. In one exemplary method, microcontacted printed self-assembled monolayers (SAMs) with local domain area sizes ranging up to 2500 &mgr;m2 and fabricated SAMs generated from electron beam lithography, are employed to control the size, orientation, phase, and morphology of the crystal. In another exemplary method, a continuous micro-crystallizer having a vessel diameter of 25 microns or less is used to ensure that that the maximum size of the crystals in at least one dimension, ad preferably two dimensions is constrained by the vessel itself. The methods allow control of supersaturation and growth conditions, as well as manageability over crystallinity and polymorphism, and each method's domain size has the potential for further reduction.
    Type: Application
    Filed: March 7, 2002
    Publication date: September 11, 2003
    Inventor: Allan S. Myerson
  • Patent number: 6596077
    Abstract: A method for the non-photochemical laser induced nucleation in which short high-intensity laser pulses are used to induce nucleation in supersaturated solutions including protein solutions. The laser induces nucleation only in the area where the beam is focused or passes through, resulting in fewer nuclei than would be achieved by spontaneous nucleation. In addition, the laser reduces nucleation time significantly.
    Type: Grant
    Filed: July 31, 2001
    Date of Patent: July 22, 2003
    Assignee: Illinois Institute of Technology
    Inventor: Allan S. Myerson
  • Publication number: 20030101926
    Abstract: A method for the high-throughput non-photochemical laser induced nucleation of crystals from aged supersaturated solutions in which short high-intensity laser pulses are used to induce nucleation in an array or sequence aged supersaturated solutions. The laser reduces nucleation time and induces nucleation only in the area where the beam is focused or passes through, resulting in fewer nuclei than would be achieved by spontaneous nucleation. The high-throughput methodologies allow more crystals to grow in a given amount of time.
    Type: Application
    Filed: August 16, 2002
    Publication date: June 5, 2003
    Inventor: Allan S. Myerson
  • Patent number: 6517789
    Abstract: An industrial waste stream recycling method for recovery of high purity zinc oxide products and other chemical and metal values from industrial waste streams containing zinc compounds by leaching the waste stream with a solution of 30% or greater by weight ammonium chloride, resulting in a first product solution and undissolved materials; adding zinc metal to the first product solution, whereby zinc-displaceable metal ions contained in the first product solution are displaced by the zinc metal and precipitate out of the first product solution as metals, leaving a second product solution; and diluting the second product solution with water, resulting in the precipitation of zinc oxide.
    Type: Grant
    Filed: April 30, 2001
    Date of Patent: February 11, 2003
    Inventors: Allan S. Myerson, Peter Robinson
  • Publication number: 20030024470
    Abstract: A method for the non-photochemical laser induced nucleation in which short high-intensity laser pulses are used to induce nucleation in supersaturated solutions including protein solutions. The laser induces nucleation only in the area where the beam is focused or passes through, resulting in fewer nuclei than would be achieved by spontaneous nucleation. In addition, the laser reduces nucleation time significantly.
    Type: Application
    Filed: July 31, 2001
    Publication date: February 6, 2003
    Inventor: Allan S. Myerson
  • Publication number: 20020137902
    Abstract: A method to prepare new or unexpected polymorphs of materials which have not been observed, or to obtain a known polymorph under different conditions than those in which it is usually made, by using a laser to cause nucleation and crystal growth to occur in a supersaturated solution in such a way as to obtain a crystal structure which would not normally appear without the use of the laser.
    Type: Application
    Filed: January 24, 2002
    Publication date: September 26, 2002
    Inventors: Allan S. Myerson, Bruce A. Garetz
  • Publication number: 20020120105
    Abstract: A method to select and prepare polymorphs of materials by switching the polarization state of light employing non-photochemical laser-induced nucleation.
    Type: Application
    Filed: September 28, 2001
    Publication date: August 29, 2002
    Inventors: Allan S. Myerson, Bruce A. Garetz
  • Patent number: 6426406
    Abstract: A method to prepare new or unexpected polymorphs of materials which have not been observed, or to obtain a known polymorph under different conditions than those in which it is usually made, by using a laser to cause nucleation and crystal growth to occur in a supersaturated solution in such a way as to obtain a crystal structure which would not normally appear without the use of the laser.
    Type: Grant
    Filed: October 23, 2000
    Date of Patent: July 30, 2002
    Inventors: Allan S. Myerson, Bruce A. Garetz
  • Patent number: 6423281
    Abstract: A method for reducing the formation of Zn(NH4)4Cl2 from ZnO/NH4Cl solutions formed during an industrial waste stream recycling method useful for the recovery of high purity zinc oxide products and other chemical and metal values from industrial waste streams.
    Type: Grant
    Filed: December 19, 2000
    Date of Patent: July 23, 2002
    Inventors: Allan S. Myerson, Peter Robinson
  • Patent number: 6264903
    Abstract: An industrial waste stream recycling method for recovery of high purity zinc oxide products and other chemical and metal values from industrial waste streams containing zinc compounds by leaching the waste stream with a solution of 30% or greater by weight ammonium chloride, resulting in a first product solution and undissolved materials; adding zinc metal to the first product solution, whereby zinc-displaceable metal ions contained in the first product solution are displaced by the zinc metal and precipitate out of the first product solution as metals, leaving a second product solution; and diluting the second product solution with water, resulting in the precipitation of zinc oxide.
    Type: Grant
    Filed: June 22, 1999
    Date of Patent: July 24, 2001
    Inventors: Allan S. Myerson, Peter Robinson
  • Publication number: 20010005496
    Abstract: A method for reducing the formation of Zn(NH4)4Cl2 from ZnO/NH4Cl solutions formed during an industrial waste stream recycling method useful for the recovery of high purity zinc oxide products and other chemical and metal values from industrial waste streams.
    Type: Application
    Filed: December 19, 2000
    Publication date: June 28, 2001
    Inventors: Allan S. Myerson, Peter Robinson
  • Patent number: 6197210
    Abstract: A process for the treatment of brass components to reduce leachable lead therefrom when the components are exposed to water which includes the steps of first cleaning the brass components with a cleaning agent in the form of a mineral acid, a mineral acid plus an oxidizing agent, ammonium chloride or ferric chloride and then rinsing to remove the cleaning agent. Thereafter, the brass components are contacted with a lead removal reagent after which the brass components are washed again. It is also possible, in the preferred embodiment, to remove any leachable lead remaining on the surface of the brass components by the additional step of treating the brass components with a water soluble acid and thereafter rinsing the components to leave the components substantially free of the acid. The process as disclosed reduces the leachable lead to well within the most stringent state and/or federal guidelines.
    Type: Grant
    Filed: August 17, 1998
    Date of Patent: March 6, 2001
    Assignee: Gerber Plumbing Fixtures Corp.
    Inventor: Allan S. Myerson
  • Patent number: 5942198
    Abstract: The beneficiation of an electric arc furnace (EAF) dust waste stream comprising zinc compounds by collecting and combining dust from two or more EAF batches with coal fines to form briquettes, adding the briquettes to a final EAF batch with the charge, and collecting the dust from the final EAF batch, so that the zinc in the beneficiated dust is of a greater proportion than in a typical batch of EAF dust. Alternatively, the EAF dust can be split into two dust streams, one of which is returned to the EAF, while the other is treated in a hydrometallurgical process. Either waste stream preliminary can be treated by adding carbon and an ammonium chloride solution, separating any undissolved components from the solution, displacing undesired metal ions from the solution using zinc metal, treating the solution to remove therefrom zinc compounds, and further treating the zinc compounds and the undissolved components resulting in zinc products and an optional iron-carbon feedback.
    Type: Grant
    Filed: June 27, 1996
    Date of Patent: August 24, 1999
    Assignee: Metals Recycling Technologies Corp.
    Inventors: Allan S. Myerson, Peter Robinson
  • Patent number: 5855645
    Abstract: A method for producing a more concentrated iron product from an industrial waste materials stream comprising iron and non-iron constituents such as EAF and basic oxygen furnace dust generally comprising the steps of compacting or briquetting the waste materials stream, roasting the waste materials stream at temperatures above about 980.degree. C. to convert the iron compounds to direct reduced iron, crushing the roasted waste materials stream, separating the iron compounds contained in the waste materials stream by magnetic separation or flotation, and providing the iron compounds back to the EAF or basic oxygen furnace.
    Type: Grant
    Filed: July 26, 1996
    Date of Patent: January 5, 1999
    Assignee: Metals Recycling Technologies Corp.
    Inventors: Allan S. Myerson, Charles W. Sanzenbacher, Peter Robinson, Charles A. Burrows, Paul R. DiBella
  • Patent number: 5851490
    Abstract: An improved method for the recovery of metal and/or chemical values from an industrial waste stream containing zinc, cadmium, lead and/or iron compounds by heating the waste stream in a reducing atmosphere, treating the resultant fumes in an ammonium chloride solution, separating any undissolved components from the solution, adjusting the pH of the solution, if necessary, to less than about 6.3, displacing undesired metal ions from the solution using zinc metal, treating the solution to remove therefrom zinc compounds, adjusting the pH of the solution to about 6.5 to about 7.0, and further treating the zinc compounds and the undissolved components, as necessary, resulting in the zinc products and the optional iron-carbon feedstock.
    Type: Grant
    Filed: April 24, 1997
    Date of Patent: December 22, 1998
    Assignee: Metals Recycling Technologies Corp.
    Inventors: Allan S. Myerson, Micheal W. Cudahy
  • Patent number: 5849063
    Abstract: A method for producing direct reduced iron or/and pig iron from an industrial waste materials stream such as EAF and blast furnace dust generally comprising the steps of separating the materials contained in the waste materials stream by magnetic separation or flotation, briquetting the iron-containing materials separated during the separation process with carbon, and providing the briquettes to a reduction furnace or/and to a small scale blast furnace or cupola furnace to produce direct reduced iron or/and pig iron, respectively. The exhaust streams from the process are further treated to recover chemical values and to allow the recycle of the exhaust streams to the main process.
    Type: Grant
    Filed: June 26, 1996
    Date of Patent: December 15, 1998
    Assignee: Metals Recycling Technologies Corp.
    Inventors: Allan S. Myerson, Charles W. Sanzenbacher, Peter J. Robinson, Charles A. Burrows, Paul R. DiBella