Patents by Inventor Allan T. Mitchell
Allan T. Mitchell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20130256773Abstract: In an embodiment of the invention, a method of fabricating a floating-gate PMOSFET (p-type metal-oxide semiconductor field-effect transistor) is disclosed. A silicide blocking layer (e.g. oxide, nitride) is used not only to block areas from being silicided but to also form an insulator on top of a poly-silicon gate. The insulator along with a top electrode (control gate) forms a capacitor on top of the poly-silicon gate. The poly-silicon gate also serves at the bottom electrode of the capacitor. The capacitor can then be used to capacitively couple charge to the poly-silicon gate. Because the poly-silicon gate is surrounded by insulating material, the charge coupled to the poly-silicon gate may be stored for a long period of time after a programming operation.Type: ApplicationFiled: May 21, 2013Publication date: October 3, 2013Applicant: Texas Instruments IncorporatedInventors: Shanjen Pan, Allan T. Mitchell, Weidong Tian
-
Patent number: 8546222Abstract: In an embodiment of the invention, a method of fabricating a floating-gate PMOSFET (p-type metal-oxide semiconductor field-effect transistor) is disclosed. A silicide blocking layer (e.g. oxide, nitride) is used not only to block areas from being silicided but to also form an insulator on top of a poly-silicon gate. The insulator along with a top electrode (control gate) forms a capacitor on top of the poly-silicon gate. The poly-silicon gate also serves at the bottom electrode of the capacitor. The capacitor can then be used to capacitively couple charge to the poly-silicon gate. Because the poly-silicon gate is surrounded by insulating material, the charge coupled to the poly-silicon gate may be stored for a long period of time after a programming operation.Type: GrantFiled: May 21, 2013Date of Patent: October 1, 2013Assignee: Texas Instruments IncorporatedInventors: Shanjen Pan, Allan T. Mitchell, Weidong Tian
-
Publication number: 20130221418Abstract: An analog floating-gate electrode in an integrated circuit, and method of fabricating the same, in which trapped charge can be stored for long durations. The analog floating-gate electrode is formed in a polycrystalline silicon gate level, doped n-type throughout its length, and includes portions serving as gate electrodes of n-channel and p-channel MOS transistors; a plate of a metal-to-poly storage capacitor; and a plate of poly-to-active tunneling capacitors. The p-channel MOS transistor includes a buried channel region, formed by way of ion implantation, disposed between its source and drain regions. Silicide-block silicon dioxide blocks the formation of silicide cladding on the electrode, while other polysilicon structures in the integrated circuit are silicide-clad.Type: ApplicationFiled: February 28, 2012Publication date: August 29, 2013Applicant: TEXAS INSTRUMENTS INCORPORATEDInventors: Allan T. Mitchell, Imran Mahmood Khan, Michael A. Wu
-
Publication number: 20130143376Abstract: A method of fabricating a one-time programmable (OTP) memory cell with improved read current in one of its programmed states, and a memory cell so fabricated. The OTP memory cell is constructed with trench isolation structures on its sides. After trench etch, and prior to filling the isolation trenches with dielectric material, a fluorine implant is performed into the trench surfaces. The implant may be normal to the device surface or at an angle from the normal. Completion of the cell transistor to form a floating-gate metal-oxide-semiconductor (MOS) transistor is then carried out. Improved on-state current (Ion) results from the fluorine implant.Type: ApplicationFiled: June 20, 2012Publication date: June 6, 2013Applicant: Texas Instruments IncorporatedInventors: Shanjen "Robert" Pan, Allan T. Mitchell, Weidong Tian
-
Publication number: 20130143375Abstract: A method of fabricating a one-time programmable (OTP) memory cell with improved read current in one of its programmed states, and a memory cell so fabricated. The OTP memory cell is constructed with trench isolation structures on its sides. After trench etch, and prior to filling the isolation trenches with dielectric material, a fluorine implant is performed into the trench surfaces. The implant may be normal to the device surface or at an angle from the normal. Completion of the cell transistor to form a floating-gate metal-oxide-semiconductor (MOS) transistor is then carried out. Improved on-state current (Ion) results from the fluorine implant.Type: ApplicationFiled: December 6, 2011Publication date: June 6, 2013Applicant: TEXAS INSTRUMENTS INCORPORATEDInventors: Shanjen "Robert" Pan, Allan T. Mitchell, Weidong Tian
-
Publication number: 20130043934Abstract: An analog floating gate circuit (10-3, 10-4) includes a first sense transistor (21, 3), a first storage capacitor (20, 5), and first (24, 4) and second (31A, 42) tunneling regions. Various portions of a first floating gate conductor (12, 2) form a floating gate of the first sense transistor, a floating first plate of the first storage capacitor (20, 5), a floating first plate of the first tunneling region, and a floating first plate of the second tunneling region, respectively. A second plate of the first storage capacitor is coupled to a first reference voltage (VREF, GND), and a second plate of the second tunneling region is coupled to a second reference voltage (VPROG/GND). Compensation circuitry (44-1, 44-2) is coupled to the first floating gate conductor, for compensating loss of trapped charge from the first floating gate conductor.Type: ApplicationFiled: August 17, 2011Publication date: February 21, 2013Inventors: David A. Heisley, Allan T. Mitchell
-
Publication number: 20130016570Abstract: In an embodiment of the invention, a method of fabricating a floating-gate NMOSFET (n-type metal-oxide semiconductor field-effect transistor) is disclosed. A silicide blocking layer (e.g. oxide, nitride) is used not only to block areas from being silicided but to also form an insulator on top of a poly-silicon gate. The insulator along with a top electrode (control gate) forms a capacitor on top of the poly-silicon gate. The poly-silicon gate also serves as the bottom electrode of the capacitor. The capacitor can then be used to capacitively couple charge to the poly-silicon gate. Because the poly-silicon gate is surrounded by insulating material, the charge coupled to the poly-silicon gate may be stored for a long period of time after a programming operation.Type: ApplicationFiled: February 6, 2012Publication date: January 17, 2013Applicant: TEXAS INSTRUMENTS INCORPORATEDInventors: Shanjen Pan, Allan T. Mitchell, Jack G. Qian
-
Publication number: 20120313180Abstract: In an embodiment of the invention, a non-volatile anti-fuse memory cell is disclosed. The memory cell consists of a programmable n-channel diode-connectable transistor. The poly-silicon gate of the transistor has two portions. One portion is doped more highly than a second portion. The transistor also has a source with two portions where one portion of the source is doped more highly than a second portion. The portion of the gate that is physically closer to the source is more lightly doped than the other portion of the poly-silicon gate. The portion of the source that is physically closer to the lightly doped portion of the poly-silicone gate is lightly doped with respect to the other portion of the source. When the transistor is programmed, a rupture in the insulator will most likely occur in the portion of the poly-silicone gate that is heavily doped.Type: ApplicationFiled: August 8, 2012Publication date: December 13, 2012Applicant: TEXAS INSTRUMENTS INCORPORATEDInventors: Allan T. Mitchell, Mark A. Eskew, Keith Jarreau
-
Publication number: 20120292682Abstract: In an embodiment of the invention, a method of fabricating a floating-gate PMOSFET (p-type metal-oxide semiconductor field-effect transistor) is disclosed. A silicide blocking layer (e.g. oxide, nitride) is used not only to block areas from being silicided but to also form an insulator on top of a poly-silicon gate. The insulator along with a top electrode (control gate) forms a capacitor on top of the poly-silicon gate. The poly-silicon gate also serves at the bottom electrode of the capacitor. The capacitor can then be used to capacitively couple charge to the poly-silicon gate. Because the poly-silicon gate is surrounded by insulating material, the charge coupled to the poly-silicon gate may be stored for a long period of time after a programming operation.Type: ApplicationFiled: May 19, 2011Publication date: November 22, 2012Applicant: TEXAS INSTRUMENTS INCORPORATEDInventors: Shanjen Pan, Allan T. Mitchell, Weidong Tian
-
Publication number: 20120244671Abstract: An analog floating-gate electrode in an integrated circuit, and method of fabricating the same, in which trapped charge can be stored for long durations. The analog floating-gate electrode is formed in a polycrystalline silicon gate level, and includes n-type and p-type doped portions serving as gate electrodes of n-channel and p-channel MOS transistors, respectively; a plate of a metal-to-poly storage capacitor; and a plate of poly-to-active tunneling capacitors. Silicide-block silicon dioxide blocks the formation of silicide cladding on the electrode, while other polysilicon structures in the integrated circuit are silicide-clad. An opening at the surface of the analog floating-gate electrode, at the location at which n-type and p-type doped portions of the floating gate electrode abut, allow formation of silicide at that location, shorting the p-n junction.Type: ApplicationFiled: January 26, 2012Publication date: September 27, 2012Applicant: TEXAS INSTRUMENTS INCORPORATEDInventors: Allan T. Mitchell, Imran Mahmood Khan, Michael A. Wu
-
Publication number: 20120241829Abstract: An analog floating-gate electrode in an integrated circuit, and method of fabricating the same, in which trapped charge can be stored for long durations. The analog floating-gate electrode is formed in a polycrystalline silicon gate level, and includes portions serving as a transistor gate electrode, a plate of a metal-to-poly storage capacitor, and a plate of poly-to-active tunneling capacitors. Silicide-block silicon dioxide blocks the formation of silicide cladding on the electrode, while other polysilicon structures in the integrated circuit are silicide-clad.Type: ApplicationFiled: March 23, 2011Publication date: September 27, 2012Applicant: TEXAS INSTRUMENTS INCORPORATEDInventors: Imran Mahmood Khan, Allan T. Mitchell, Kaiping Liu
-
Publication number: 20120228724Abstract: In an embodiment of the invention, a non-volatile anti-fuse memory cell is disclosed. The memory cell consists of a programmable n-channel diode-connectable transistor. The poly-silicon gate of the transistor has two portions. One portion is doped more highly than a second portion. The transistor also has a source with two portions where one portion of the source is doped more highly than a second portion. The portion of the gate that is physically closer to the source is more lightly doped than the other portion of the poly-silicon gate. The portion of the source that is physically closer to the lightly doped portion of the poly-silicone gate is lightly doped with respect to the other portion of the source. When the transistor is programmed, a rupture in the insulator will most likely occur in the portion of the poly-silicone gate that is heavily doped.Type: ApplicationFiled: March 11, 2011Publication date: September 13, 2012Applicant: TEXAS INSTRUMENTS INCORPORATEDInventors: Allan T. Mitchell, Mark A. Eskew, Keith Jarreau
-
Patent number: 8258586Abstract: In an embodiment of the invention, a non-volatile anti-fuse memory cell is disclosed. The memory cell consists of a programmable n-channel diode-connectable transistor. The poly-silicon gate of the transistor has two portions. One portion is doped more highly than a second portion. The transistor also has a source with two portions where one portion of the source is doped more highly than a second portion. The portion of the gate that is physically closer to the source is more lightly doped than the other portion of the poly-silicon gate. The portion of the source that is physically closer to the lightly doped portion of the poly-silicone gate is lightly doped with respect to the other portion of the source. When the transistor is programmed, a rupture in the insulator will most likely occur in the portion of the poly-silicone gate that is heavily doped.Type: GrantFiled: March 11, 2011Date of Patent: September 4, 2012Assignee: Texas Instruments IncorporatedInventors: Allan T. Mitchell, Mark A. Eskew, Keith Jarreau
-
Patent number: 8178915Abstract: An analog floating-gate electrode in an integrated circuit, and method of fabricating the same, in which trapped charge can be stored for long durations. The analog floating-gate electrode is formed in a polycrystalline silicon gate level, and includes n-type and p-type doped portions serving as gate electrodes of n-channel and p-channel MOS transistors, respectively; a plate of a metal-to-poly storage capacitor; and a plate of poly-to-active tunneling capacitors. Silicide-block silicon dioxide blocks the formation of silicide cladding on the electrode, while other polysilicon structures in the integrated circuit are silicide-clad. An opening at the surface of the analog floating-gate electrode, at the location at which n-type and p-type doped portions of the floating gate electrode abut, allow formation of silicide at that location, shorting the p-n junction.Type: GrantFiled: March 23, 2011Date of Patent: May 15, 2012Assignee: Texas Instruments IncorporatedInventors: Allan T. Mitchell, Imran Mahmood Khan, Michael A. Wu
-
Patent number: 8174884Abstract: An Electrically Erasable Programmable Read Only Memory (EEPROM) memory array (FIGS. 7 and 8) is disclosed. The memory array includes a plurality of memory cells arranged in rows and columns. Each memory cell has a switch (806) coupled to receive a first program voltage (PGMDATA) and a first select signal (ROWSEL). A voltage divider (804) is coupled in series with the switch. A sense transistor (152) has a sense control terminal (156) and a current path coupled between an output terminal (108) and a reference terminal (110). A first capacitor (154) has a first terminal coupled to the switch and a second terminal coupled to the sense control terminal. An access transistor (716) has a control terminal coupled to receive a read signal (721), and a current path coupled between the output terminal and a bit line (718).Type: GrantFiled: July 20, 2010Date of Patent: May 8, 2012Assignee: Texas Instruments IncorporatedInventors: Harvey J. Stiegler, Allan T. Mitchell, Robert N. Rountree
-
Publication number: 20120020163Abstract: An Electrically Erasable Programmable Read Only Memory (EEPROM) memory array (FIG. 7) is disclosed. The memory array includes a plurality of memory cells arranged in rows and columns. Each memory cell has a switch (714), an access transistor (716), and a sense transistor (720). A current path of each access transistor is connected in series with a current path of each respective sense transistor. A first program data lead (706) is connected to the switch of each memory cell in a first column. A bit line (718) is connected to the current path of each access transistor in the first column. A read select lead (721) is connected to a control terminal of each access transistor in the first row. A first row select lead (700) is connected to a control terminal of the switch in each memory cell in a first row.Type: ApplicationFiled: July 20, 2010Publication date: January 26, 2012Inventors: Harvey J. Stiegler, Allan T. Mitchell
-
Publication number: 20120020162Abstract: An Electrically Erasable Programmable Read Only Memory (EEPROM) memory array (FIGS. 7 and 8) is disclosed. The memory array includes a plurality of memory cells arranged in rows and columns. Each memory cell has a switch (806) coupled to receive a first program voltage (PGMDATA) and a first select signal (ROWSEL). A voltage divider (804) is coupled in series with the switch. A sense transistor (152) has a sense control terminal (156) and a current path coupled between an output terminal (108) and a reference terminal (110). A first capacitor (154) has a first terminal coupled to the switch and a second terminal coupled to the sense control terminal. An access transistor (716) has a control terminal coupled to receive a read signal (721), and a current path coupled between the output terminal and a bit line (718).Type: ApplicationFiled: July 20, 2010Publication date: January 26, 2012Inventors: Harvey J. Stiegler, Allan T. Mitchell, Robert N. Rountree
-
Publication number: 20110303959Abstract: An integrated circuit with non-volatile memory cells shielded from ultraviolet light by a shielding structure compatible with chemical-mechanical processing. The disclosed shielding structure includes a roof structure with sides; along each side are spaced-apart contact posts, each with a width on the order of the wavelength of ultraviolet light to be shielded, and spaced apart by a distance that is also on the order of the wavelength of ultraviolet light to be shielded. The contact posts may be provided in multiple rows, and extending to a diffused region or to a polysilicon ring or both. The multiple rows may be aligned with one another or staggered relative to one another.Type: ApplicationFiled: June 10, 2010Publication date: December 15, 2011Applicant: Texas Instruments IncorporatedInventors: Allan T. Mitchell, Keith Jarreau
-
Publication number: 20100039868Abstract: An Electrically Erasable Programmable Read Only Memory (EEPROM) memory cell (FIGS. 1-2) is disclosed. The memory cell includes a sense transistor (152) having a source (110), a drain (108), and a control gate layer (156). The memory cell includes a first lightly doped region (160) having a first conductivity type and a second lightly doped region (162) having the first conductivity type. A first dielectric region is formed between the control gate layer and the first lightly doped region. A second dielectric region is formed between the control gate layer and the second lightly doped region.Type: ApplicationFiled: July 28, 2009Publication date: February 18, 2010Inventors: Allan T. Mitchell, Harvey J. Stiegler
-
Publication number: 20020008302Abstract: A polysilicon resistor is formed using a late implant process. Low dopant concentrations on the order of 6×1019 to 3.75×1020 have shown good results. with a reduced post anneal temperature. Both the first and second order temperature coefficients (TC1 and TC2) can then be adjusted. Using electrical trimming resistors can be produced with highly linear temperature characteristics. By varying the geometries of the resistors, low trimming threshold current densities and voltages can be used to produce good results.Type: ApplicationFiled: September 26, 2001Publication date: January 24, 2002Applicant: Dallas Semiconductor CorporationInventors: Varun Singh, Tanmay Kumar, Thomas E. Harrington, Roy Austin Hensley, Allan T. Mitchell, Jack Gang Qian