Patents by Inventor Allen McTeer

Allen McTeer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11791268
    Abstract: Described are methods for forming a tungsten conductive structure over a substrate, such as a semiconductor substrate. Described examples include forming a silicon-containing material, such as a doped silicon-containing material, over a supporting structure. The silicon-containing material is then subsequently converted to a tungsten seed material containing the dopant material. A tungsten fill material of lower resistance will then be formed over the tungsten seed material.
    Type: Grant
    Filed: February 7, 2022
    Date of Patent: October 17, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Jordan D. Greenlee, Christian George Emor, Travis Rampton, Everett Allen McTeer, Rita J. Klein
  • Publication number: 20220310524
    Abstract: Some embodiments include apparatuses and methods of forming the apparatuses. One of the apparatuses includes a first dielectric material; a second dielectric material separated from the first dielectric material; a memory cell string including a pillar extending through the first and second dielectric materials, the pillar including a portion between the first and second dielectric materials; an additional dielectric material contacting the portion of the pillar; a conductive material contacting the additional dielectric material; and a tungsten structure including a portion of tungsten contacting the conductive material, wherein a majority of the portion of tungsten is beta-phase tungsten.
    Type: Application
    Filed: March 29, 2021
    Publication date: September 29, 2022
    Inventors: Jordan D. Greenlee, Rita J. Klein, Everett Allen McTeer, John Hopkins, David Ross Economy
  • Publication number: 20220310525
    Abstract: Some embodiments include apparatuses and methods of forming the apparatuses. One of the apparatuses includes a first dielectric material; a second dielectric material separated from the first dielectric material; a memory cell string including a pillar extending through the first and second dielectric materials, the pillar including a portion between the first and second dielectric materials; and a tungsten material located between the first and second dielectric materials and separated from the portion of the pillar and the first and second dielectric materials by an additional dielectric material. The additional dielectric material has a dielectric constant greater than a dielectric constant of silicon dioxide. The additional dielectric material contacts the portion of the pillar and the tungsten material.
    Type: Application
    Filed: March 29, 2021
    Publication date: September 29, 2022
    Inventors: Jordan D. Greenlee, Rita J. Klein, Everett Allen McTeer, John Hopkins
  • Publication number: 20220230962
    Abstract: Described are methods for forming a tungsten conductive structure over a substrate, such as a semiconductor substrate. Described examples include forming a silicon-containing material, such as a doped silicon-containing material, over a supporting structure. The silicon-containing material is then subsequently converted to a tungsten seed material containing the dopant material. A tungsten fill material of lower resistance will then be formed over the tungsten seed material.
    Type: Application
    Filed: February 7, 2022
    Publication date: July 21, 2022
    Inventors: Jordan D. Greenlee, Christian George Emor, Travis Rampton, Everett Allen McTeer, Rita J. Klein
  • Patent number: 11244903
    Abstract: Described are methods for forming a tungsten conductive structure over a substrate, such as a semiconductor substrate. Described examples include forming a silicon-containing material, such as a doped silicon-containing material, over a supporting structure. The silicon-containing material is then subsequently converted to a tungsten seed material containing the dopant material. A tungsten fill material of lower resistance will then be formed over the tungsten seed material.
    Type: Grant
    Filed: December 30, 2019
    Date of Patent: February 8, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Jordan D. Greenlee, Christian George Emor, Travis Rampton, Everett Allen McTeer, Rita J. Klein
  • Patent number: 11133461
    Abstract: Devices and systems having a diffusion barrier for limiting diffusion of a phase change material including an electrode, a phase change material electrically coupled to the electrode, and a carbon and TiN (C:TiN) diffusion barrier disposed between the electrode and the phase change material to limit diffusion of the phase change material are disclosed and described.
    Type: Grant
    Filed: September 26, 2014
    Date of Patent: September 28, 2021
    Assignee: Intel Corporation
    Inventors: Christopher Petz, Dale Collins, Tsz-Wah Chan, Swapnil Lengade, Yongjun Hu, Allen McTeer
  • Patent number: 11107823
    Abstract: Some embodiments include an integrated structure having semiconductor material within a region between two parallel surfaces. The semiconductor material has grain boundaries parallel to the parallel surfaces. At least one circuit component utilizes a region of the semiconductor material in a gated device. The semiconductor material has little if any metal therein so that the gated device has Ion/Ioff characteristics similar to if the semiconductor material had no metal therein. Some embodiments include a method in which semiconductor material is provided between a pair of parallel surfaces, and in which the parallel surfaces and semiconductor material extend between a first end and a second end. Metal is formed adjacent the first end, and gettering material is formed adjacent the second end. Thermal processing induces crystallization of the semiconductor material and drives the metal along the semiconductor material and into the gettering material. The gettering material is then removed.
    Type: Grant
    Filed: November 14, 2019
    Date of Patent: August 31, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Yongjun Jeff Hu, Allen McTeer
  • Publication number: 20210257526
    Abstract: A composition and method for formation of ohmic contacts on a semiconductor structure are provided. The composition includes a TiAlxNy material at least partially contiguous with the semiconductor structure. The TiAlxNy material can be TiAl3. The composition can include an aluminum material, the aluminum material being contiguous to at least part of the TiAlxNy material, such that the TiAlxNy material is between the aluminum material and the semiconductor structure. The method includes annealing the composition to form an ohmic contact on the semiconductor structure.
    Type: Application
    Filed: April 6, 2021
    Publication date: August 19, 2021
    Inventors: Yongjun Jeff Hu, John Mark Meldrim, Shanming Mou, Everett Allen McTeer
  • Publication number: 20210202388
    Abstract: Described are methods for forming a tungsten conductive structure over a substrate, such as a semiconductor substrate. Described examples include forming a silicon-containing material, such as a doped silicon-containing material, over a supporting structure. The silicon-containing material is then subsequently converted to a tungsten seed material containing the dopant material. A tungsten fill material of lower resistance will then be formed over the tungsten seed material.
    Type: Application
    Filed: December 30, 2019
    Publication date: July 1, 2021
    Inventors: Jordan D. Greenlee, Christian George Emor, Travis Rampton, Everett Allen McTeer, Rita J. Klein
  • Patent number: 11031417
    Abstract: A method used in forming an array of elevationally-extending transistors comprises forming vertically-alternating tiers of insulating material and void space. Such method includes forming (a) individual longitudinally-aligned channel openings extending elevationally through the insulating-material tiers, and (b) horizontally-elongated trenches extending elevationally through the insulating-material tiers. The void-space tiers are filled with conductive material by flowing the conductive material or one or more precursors thereof through at least one of (a) and (b) to into the void-space tiers. After the filling, transistor channel material is formed in the individual channel openings along the insulating-material tiers and along the conductive material in the filled void-space tiers.
    Type: Grant
    Filed: June 16, 2020
    Date of Patent: June 8, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Jordan D. Greenlee, John Mark Meldrim, E. Allen McTeer
  • Patent number: 10998481
    Abstract: A composition and method for formation of ohmic contacts on a semiconductor structure are provided. The composition includes a TiAlxNy material at least partially contiguous with the semiconductor structure. The TiAlxNy material can be TiAl3. The composition can include an aluminum material, the aluminum material being contiguous to at least part of the TiAlxNy material, such that the TiAlxNy material is between the aluminum material and the semiconductor structure. The method includes annealing the composition to form an ohmic contact on the semiconductor structure.
    Type: Grant
    Filed: October 3, 2019
    Date of Patent: May 4, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Yongjun Jeff Hu, John Mark Meldrim, Shanming Mou, Everett Allen McTeer
  • Publication number: 20200312880
    Abstract: A method used in forming an array of elevationally-extending transistors comprises forming vertically-alternating tiers of insulating material and void space. Such method includes forming (a) individual longitudinally-aligned channel openings extending elevationally through the insulating-material tiers, and (b) horizontally-elongated trenches extending elevationally through the insulating-material tiers. The void-space tiers are filled with conductive material by flowing the conductive material or one or more precursors thereof through at least one of (a) and (b) to into the void-space tiers. After the filling, transistor channel material is formed in the individual channel openings along the insulating-material tiers and along the conductive material in the filled void-space tiers.
    Type: Application
    Filed: June 16, 2020
    Publication date: October 1, 2020
    Applicant: Micron Technology, Inc.
    Inventors: Jordan D. Greenlee, John Mark Meldrim, E. Allen McTeer
  • Patent number: 10777651
    Abstract: Some embodiments disclose a gate stack having a gate (e.g., polysilicon (poly) material) horizontally between shallow trench isolations (STIs), a tungsten silicide (WSix) material over the gate and the STIs, and a tungsten silicon nitride (WSiN) material on a top surface of the WSix material. Some embodiments disclose a gate stack having a gate between STIs, a first WSix material over the gate and the STIs, a WSiN interlayer material on a top surface of the first WSix material, and a second WSix material on a top surface of the WSiN interlayer material. Additional embodiments are disclosed.
    Type: Grant
    Filed: November 27, 2018
    Date of Patent: September 15, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Yushi Hu, John Mark Meldrim, Eric Blomiley, Everett Allen McTeer, Matthew J. King
  • Patent number: 10731273
    Abstract: Various embodiments include methods and apparatuses comprising methods for formation of and apparatuses including a source material for electronic devices. One such apparatus includes a vertical string of memory cells comprising a plurality of alternating levels of conductor and dielectric material, a semiconductor material extending through the plurality of alternating levels of conductor material and dielectric material, and a source material coupled to the semiconductor material. The source material includes a titanium nitride layer and a source polysilicon layer in direct contact with the titanium nitride layer. Other methods and apparatuses are disclosed.
    Type: Grant
    Filed: June 10, 2019
    Date of Patent: August 4, 2020
    Assignee: Micron Technology, Inc.
    Inventors: John Mark Meldrim, Yushi Hu, Yongjun Jeff Hu, Everett Allen McTeer
  • Patent number: 10727250
    Abstract: A method used in forming an array of elevationally-extending transistors comprises forming vertically-alternating tiers of insulating material and void space. Such method includes forming (a) individual longitudinally-aligned channel openings extending elevationally through the insulating-material tiers, and (b) horizontally-elongated trenches extending elevationally through the insulating-material tiers. The void-space tiers are filled with conductive material by flowing the conductive material or one or more precursors thereof through at least one of (a) and (b) to into the void-space tiers. After the filling, transistor channel material is formed in the individual channel openings along the insulating-material tiers and along the conductive material in the filled void-space tiers.
    Type: Grant
    Filed: June 4, 2019
    Date of Patent: July 28, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Jordan D. Greenlee, John Mark Meldrim, E. Allen McTeer
  • Patent number: 10720574
    Abstract: Memory devices and methods for fabricating memory devices have been disclosed. One such method includes forming the memory stack out of a plurality of elements. An adhesion species is formed on at least one sidewall of the memory stack wherein the adhesion species has a gradient structure that results in the adhesion species intermixing with an element of the memory stack to terminate unsatisfied atomic bonds of the element. The gradient structure further comprises a film of the adhesion species on an outer surface of the at least one sidewall. A dielectric material is implanted into the film of the adhesion species to form a sidewall liner.
    Type: Grant
    Filed: February 4, 2019
    Date of Patent: July 21, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Tsz W. Chan, Yongjun Jeff Hu, Swapnil Lengade, Shu Qin, Everett Allen McTeer
  • Patent number: 10692572
    Abstract: Memory devices and methods for fabricating memory devices have been disclosed. One such method includes forming a memory stack out of a plurality of elements. A sidewall liner is formed on a sidewall of the memory stack using a physical vapor deposition (PVD) process, including an adhesion species and a dielectric, such that the adhesion species intermixes with an element of the memory stack to terminate unsatisfied atomic bonds of the element and the dielectric forms a dielectric film with the adhesive species on the sidewall.
    Type: Grant
    Filed: May 20, 2019
    Date of Patent: June 23, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Yongjun Jeff Hu, Tsz W. Chan, Christopher W. Petz, Everett Allen McTeer
  • Publication number: 20200083238
    Abstract: Some embodiments include an integrated structure having semiconductor material within a region between two parallel surfaces. The semiconductor material has grain boundaries parallel to the parallel surfaces. At least one circuit component utilizes a region of the semiconductor material in a gated device. The semiconductor material has little if any metal therein so that the gated device has Ion/Ioff characteristics similar to if the semiconductor material had no metal therein. Some embodiments include a method in which semiconductor material is provided between a pair of parallel surfaces, and in which the parallel surfaces and semiconductor material extend between a first end and a second end. Metal is formed adjacent the first end, and gettering material is formed adjacent the second end. Thermal processing induces crystallization of the semiconductor material and drives the metal along the semiconductor material and into the gettering material. The gettering material is then removed.
    Type: Application
    Filed: November 14, 2019
    Publication date: March 12, 2020
    Applicant: Micron Technology, Inc.
    Inventors: Yongjun Jeff Hu, Allen McTeer
  • Publication number: 20200035891
    Abstract: A composition and method for formation of ohmic contacts on a semiconductor structure are provided. The composition includes a TiAlxNy material at least partially contiguous with the semiconductor structure. The TiAlxNy material can be TiAl3. The composition can include an aluminum material, the aluminum material being contiguous to at least part of the TiAlxNy material, such that the TiAlxNy material is between the aluminum material and the semiconductor structure. The method includes annealing the composition to form an ohmic contact on the semiconductor structure.
    Type: Application
    Filed: October 3, 2019
    Publication date: January 30, 2020
    Inventors: Yongjun Jeff Hu, John Mark Meldrim, Shanming Mou, Everett Allen McTeer
  • Patent number: 10546895
    Abstract: Memory devices and methods for fabricating memory devices have been disclosed. One such memory device includes a first electrode material formed on a word line material. A selector device material is formed on the first electrode material. A second electrode material is formed on the selector device material. A phase change material is formed on the second electrode material. A third electrode material is formed on the phase change material. An adhesion species is plasma doped into sidewalls of the memory stack and a liner material is formed on the sidewalls of the memory stack. The adhesion species intermixes with an element of the memory stack and the sidewall liner to terminate unsatisfied atomic bonds of the element and the sidewall liner.
    Type: Grant
    Filed: January 7, 2019
    Date of Patent: January 28, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Yongjun Jeff Hu, Tsz W. Chan, Swapnil Lengade, Everett Allen McTeer, Shu Qin