Patents by Inventor Alvin J. Joseph

Alvin J. Joseph has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160372396
    Abstract: Chip packages and methods of forming a chip package. The chip package includes a power amplifier and a thermal pathway structure configured to influence transport of heat energy. The power amplifier includes a first emitter finger and a second emitter finger having at least one parameter that is selected based upon proximity to the thermal pathway structure.
    Type: Application
    Filed: June 22, 2015
    Publication date: December 22, 2016
    Inventors: Hanyi Ding, Vibhor Jain, Alvin J. Joseph, Anthony K. Stamper
  • Patent number: 9496250
    Abstract: Methods for designing and fabricating a bipolar junction transistor. A predetermined size for a device region of the bipolar junction transistor is determined based on a given current gain. A trench isolation layout is determined for a plurality of trench isolation regions to be formed in a substrate to surround the device region. The trench isolation regions are laterally spaced relative to each other in the trench isolation layout in order to set the predetermined size of the device region. An interconnect layout is determined that specifies one or more contacts coupled with a terminal of the bipolar junction transistor. The specification of the one or more contacts in the interconnect layout is unchanged by the determination of the trench isolation layout.
    Type: Grant
    Filed: December 8, 2014
    Date of Patent: November 15, 2016
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Vibhor Jain, Alvin J. Joseph, Anthony K. Stamper
  • Publication number: 20160308270
    Abstract: Approaches for an on-chip antenna are provided. A method includes forming an antenna in an insulator layer at a front side of a substrate. The method also includes forming a trench in the substrate underneath the antenna. The method further includes forming a fill material in the trench. The substrate is composed of a material having a first dielectric constant. The fill material has a second dielectric constant that is less than the first dielectric constant.
    Type: Application
    Filed: April 15, 2015
    Publication date: October 20, 2016
    Inventors: Hanyi Ding, Mark D. Jaffe, Alvin J. Joseph, Anthony K. Stamper
  • Publication number: 20160211167
    Abstract: A field effect transistor (FET) with an underlying airgap and methods of manufacture are disclosed. The method includes forming an amorphous layer at a predetermined depth of a substrate. The method further includes forming an airgap in the substrate under the amorphous layer. The method further includes forming a completely isolated transistor in an active region of the substrate, above the amorphous layer and the airgap.
    Type: Application
    Filed: March 29, 2016
    Publication date: July 21, 2016
    Inventors: Mark D. JAFFE, Alvin J. JOSEPH, Qizhi LIU, Anthony K. STAMPER
  • Patent number: 9385022
    Abstract: Various methods include: forming an optical waveguide in a bulk silicon layer, the optical waveguide including a set of shallow trench isolation (STI) regions overlying a silicon substrate region; ion implanting the silicon substrate to amorphize a portion of the silicon substrate; forming a set of trenches through the STI regions and into the underlying silicon substrate region; undercut etching the silicon substrate region under the STI regions through the set of trenches to form a set of cavities, wherein the at least partially amorphized portion of the silicon substrate etches at a rate less than an etch rate of the silicon substrate; and sealing the set of cavities.
    Type: Grant
    Filed: May 21, 2014
    Date of Patent: July 5, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Mark D. Jaffe, Alvin J. Joseph, Qizhi Liu, Anthony K. Stamper
  • Publication number: 20160163685
    Abstract: Methods for designing and fabricating a bipolar junction transistor. A predetermined size for a device region of the bipolar junction transistor is determined based on a given current gain. A trench isolation layout is determined for a plurality of trench isolation regions to be formed in a substrate to surround the device region. The trench isolation regions are laterally spaced relative to each other in the trench isolation layout in order to set the predetermined size of the device region. An interconnect layout is determined that specifies one or more contacts coupled with a terminal of the bipolar junction transistor. The specification of the one or more contacts in the interconnect layout is unchanged by the determination of the trench isolation layout.
    Type: Application
    Filed: December 8, 2014
    Publication date: June 9, 2016
    Inventors: Vibhor Jain, Alvin J. Joseph, Anthony K. Stamper
  • Patent number: 9349793
    Abstract: A field effect transistor (FET) with an underlying airgap and methods of manufacture are disclosed. The method includes forming an amorphous layer at a predetermined depth of a substrate. The method further includes forming an airgap in the substrate under the amorphous layer. The method further includes forming a completely isolated transistor in an active region of the substrate, above the amorphous layer and the airgap.
    Type: Grant
    Filed: September 8, 2014
    Date of Patent: May 24, 2016
    Assignee: International Business Machines Corporation
    Inventors: Mark D. Jaffe, Alvin J. Joseph, Qizhi Liu, Anthony K. Stamper
  • Publication number: 20160093523
    Abstract: A field effect transistor (FET) with an underlying airgap and methods of manufacture are disclosed. The method includes forming an amorphous layer at a predetermined depth of a substrate. The method further includes forming an airgap in the substrate under the amorphous layer. The method further includes forming a completely isolated transistor in an active region of the substrate, above the amorphous layer and the airgap.
    Type: Application
    Filed: December 9, 2015
    Publication date: March 31, 2016
    Inventors: Mark D. JAFFE, Alvin J. JOSEPH, Qizhi LIU, Anthony K. STAMPER
  • Publication number: 20160071925
    Abstract: A field effect transistor (FET) with an underlying airgap and methods of manufacture are disclosed. The method includes forming an amorphous layer at a predetermined depth of a substrate. The method further includes forming an airgap in the substrate under the amorphous layer. The method further includes forming a completely isolated transistor in an active region of the substrate, above the amorphous layer and the airgap.
    Type: Application
    Filed: September 8, 2014
    Publication date: March 10, 2016
    Inventors: Mark D. JAFFE, Alvin J. JOSEPH, Qizhi LIU, Anthony K. STAMPER
  • Publication number: 20160043203
    Abstract: Device structures and fabrication methods for a bipolar junction transistor. A first semiconductor layer is formed on a substrate containing a first terminal. An etch stop layer is formed on the first semiconductor layer, and a second semiconductor layer is formed on the etch stop layer. The second semiconductor layer is etched to define a second terminal at a location of an etch mask on the second semiconductor layer. A first material comprising the etch stop layer and a second material comprising the second semiconductor layer are selected such that the second material of the second semiconductor layer etches at a greater etch rate than the first material of the etch stop layer. The first semiconductor layer may be a base layer that is used to form an intrinsic base and an extrinsic base of the bipolar junction transistor.
    Type: Application
    Filed: August 5, 2014
    Publication date: February 11, 2016
    Inventors: Deborah A. Alperstein, David L. Harame, Alvin J. Joseph, Qizhi Liu, Keith J. Machia, Christa R. Willets
  • Patent number: 9257324
    Abstract: A substrate includes a first region having a first resistivity, for optimizing a field effect transistor, a second region having a second resistivity, for optimizing an npn subcollector of a bipolar transistor device and triple well, a third region having a third resistivity, with a high resistivity for a passive device, a fourth region, substantially without implantation, to provide low perimeter capacitance for devices.
    Type: Grant
    Filed: March 31, 2014
    Date of Patent: February 9, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Alan B. Botula, Renata Camillo-Castillo, James S. Dunn, Jeffrey P. Gambino, Douglas B. Hershberger, Alvin J. Joseph, Robert M. Rassel, Mark E. Stidham
  • Patent number: 9231087
    Abstract: Device structures, design structures, and fabrication methods for a bipolar junction transistor. A first layer comprised of a first semiconductor material and a second layer comprised of a second semiconductor material are disposed on a substrate containing a first terminal of the bipolar junction transistor. The second layer is disposed on the first layer and a patterned etch mask is formed on the second layer. A trench extends through the pattern hardmask layer, the first layer, and the second layer and into the substrate. The trench defines a section of the first layer stacked with a section of the second layer. A selective etching process is used to narrow the section of the second layer relative to the section of the first layer to define a second terminal and to widen a portion of the trench in the substrate to undercut the section of the first layer.
    Type: Grant
    Filed: April 2, 2015
    Date of Patent: January 5, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: John J. Benoit, James R. Elliott, Peter B. Gray, Alvin J. Joseph, Qizhi Liu, Christa R. Willets
  • Patent number: 9214561
    Abstract: An integrated recessed thin body field effect transistor (FET) and methods of manufacture are disclosed. The method includes recessing a portion of a semiconductor material. The method further includes forming at least one gate structure within the recessed portion of the semiconductor material.
    Type: Grant
    Filed: June 27, 2013
    Date of Patent: December 15, 2015
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Michel J. Abou-Khalil, Alan B. Botula, Mark D. Jaffe, Alvin J. Joseph, James A. Slinkman
  • Publication number: 20150340273
    Abstract: Various methods include: forming an optical waveguide in a bulk silicon layer, the optical waveguide including a set of shallow trench isolation (STI) regions overlying a silicon substrate region; ion implanting the silicon substrate to amorphize a portion of the silicon substrate; forming a set of trenches through the STI regions and into the underlying silicon substrate region; undercut etching the silicon substrate region under the STI regions through the set of trenches to form a set of cavities, wherein the at least partially amorphized portion of the silicon substrate etches at a rate less than an etch rate of the silicon substrate; and sealing the set of cavities.
    Type: Application
    Filed: May 21, 2014
    Publication date: November 26, 2015
    Applicant: International Business Machines Corporation
    Inventors: Mark D. Jaffe, Alvin J. Joseph, Qizhi Liu, Anthony K. Stamper
  • Patent number: 9171121
    Abstract: A method, structure, and design structure for a through-silicon-via Wilkinson power divider. A method includes: forming an input on a first side of a substrate; forming a first leg comprising a first through-silicon-via formed in the substrate, wherein the first leg electrically connects the input and a first output; forming a second leg comprising a second through-silicon-via formed in the substrate, wherein the second leg electrically connects the input and a second output, and forming a resistor electrically connected between the first output and the second output.
    Type: Grant
    Filed: February 8, 2013
    Date of Patent: October 27, 2015
    Assignee: GLOBALFOUNDRIES U.S. 2 LLC
    Inventors: Hanyi Ding, Alvin J. Joseph, Wayne H. Woods, Jr.
  • Patent number: 9165819
    Abstract: According to a method herein, a first side of a substrate is implanted with a first material to change a crystalline structure of the first side of the substrate from a first crystalline state to a second crystalline state, after the first material is implanted. A second material is deposited on the first side of the substrate, after the first material is implanted. A first side of an insulator layer is bonded to the second material on the first side of the substrate. Integrated circuit devices are formed on a second side of the insulator layer, opposite the first side of the insulator layer, after the insulator layer is bonded to the second material. The integrated circuit devices are thermally annealed. The first material maintains the second crystalline state of the first side of the substrate during the annealing.
    Type: Grant
    Filed: November 18, 2014
    Date of Patent: October 20, 2015
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Alan B. Botula, Jeffrey E. Hanrahan, Mark D. Jaffe, Alvin J. Joseph, Dale W. Martin, Gerd Pfeiffer, James A. Slinkman
  • Publication number: 20150255363
    Abstract: An approach for sinking heat from a transistor is provided. A method includes forming a substrate contact extending from a first portion of a silicon-on-insulator (SOI) island to a substrate. The method also includes forming a transistor in a second portion of the SOI island. The method further includes electrically isolating the substrate contact from the transistor by doping the first portion of the SOI island.
    Type: Application
    Filed: May 19, 2015
    Publication date: September 10, 2015
    Inventors: Alan B. Botula, Alvin J. Joseph, James A. Slinkman, Randy L. Wolf
  • Publication number: 20150214344
    Abstract: Device structures, design structures, and fabrication methods for a bipolar junction transistor. A first layer comprised of a first semiconductor material and a second layer comprised of a second semiconductor material are disposed on a substrate containing a first terminal of the bipolar junction transistor. The second layer is disposed on the first layer and a patterned etch mask is formed on the second layer. A trench extends through the pattern hardmask layer, the first layer, and the second layer and into the substrate. The trench defines a section of the first layer stacked with a section of the second layer. A selective etching process is used to narrow the section of the second layer relative to the section of the first layer to define a second terminal and to widen a portion of the trench in the substrate to undercut the section of the first layer.
    Type: Application
    Filed: April 2, 2015
    Publication date: July 30, 2015
    Inventors: John J. Benoit, James R. Elliott, Peter B. Gray, Alvin J. Joseph, Qizhi Liu, Christa R. Willets
  • Patent number: 9076810
    Abstract: Bipolar transistor structures, methods of designing and fabricating bipolar transistors, methods of designing circuits having bipolar transistors. The method of designing the bipolar transistor includes: selecting an initial design of a bipolar transistor; scaling the initial design of the bipolar transistor to generate a scaled design of the bipolar transistor; determining if stress compensation of the scaled design of the bipolar transistor is required based on dimensions of an emitter of the bipolar transistor after the scaling; and if stress compensation of the scaled design of the bipolar transistor is required then adjusting a layout of a trench isolation layout level of the scaled design relative to a layout of an emitter layout level of the scaled design to generate a stress compensated scaled design of the bipolar transistor.
    Type: Grant
    Filed: October 7, 2014
    Date of Patent: July 7, 2015
    Assignee: International Business Machines Corporation
    Inventors: Alvin J. Joseph, Ramana M. Malladi, James A. Slinkman
  • Patent number: 9070651
    Abstract: A non-linear kerf monitor, methods of manufacture and design structures are provided. The structure includes a coplanar waveguide provided in a kerf of a wafer between a first chip and a second chip. The structure further includes a shunt switch and a series switch coupled to the coplanar waveguide.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: June 30, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Alan B. Botula, Alvin J. Joseph, Randy L. Wolf