Patents by Inventor Amane Mochizuki

Amane Mochizuki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100231125
    Abstract: Compositions and light-emitting devices related to compounds represented by Formula I are disclosed herein.
    Type: Application
    Filed: March 12, 2009
    Publication date: September 16, 2010
    Inventors: SHENG LI, AMANE MOCHIZUKI
  • Publication number: 20100221850
    Abstract: Embodiments of the present invention relate to semiconducting carbon-containing devices and methods of making thereof. The semi-conducting carbon containing devices comprise an n-type semiconducting layer and a p-type semiconducting layer, both of which are positioned over a substrate. The n-type semiconducting layer can be formed by pyrolyzing a carbon- and nitrogen-containing polymer, and the p-type semiconducting layer can be formed by pyrolyzing an aromatic- and aliphatic-group-containing polymer. In some embodiments, the devices are solar cell devices.
    Type: Application
    Filed: April 2, 2010
    Publication date: September 2, 2010
    Applicant: Nitto Denko Corporation
    Inventors: Amane Mochizuki, Toshitaka Nakamura, Masakatsu Urairi, Guang Pan
  • Publication number: 20100213452
    Abstract: Some embodiments provide a compound represented by Formula 1: wherein R1, R2, R3, R6, R7, and R8 are independently selected from the group consisting of H, optionally substituted C1-12 alkyl, optionally substituted phenyl, optionally substituted carbazolyl, optionally substituted diphenylamine and optionally substituted diphenylaminophenyl; provided that: at least one of R1, R2, and R3 is selected from optionally substituted carbazolyl, optionally substituted diphenylamine and optionally substituted diphenylaminophenyl and at least one of R6, R7, and R8 is selected from optionally substituted carbazolyl, optionally substituted diphenylamine and optionally substituted diphenylaminophenyl; and R4 and R5 are independently selected from the group consisting of H, optionally substituted C1-12 alkyl, optionally substituted phenyl, optionally substituted diphenylamine and optionally substituted diphenylaminophenyl.
    Type: Application
    Filed: January 27, 2010
    Publication date: August 26, 2010
    Applicant: NITTO DENKO CORPORATION
    Inventors: David T. Sisk, Sheng Li, Amane Mochizuki
  • Publication number: 20100213453
    Abstract: Some embodiments provide a compound represented by Formula 1: wherein R1, R2, R3, R6, R7, and R8 are independently selected from the group consisting of H, optionally substituted C1-12 alkyl, optionally substituted phenyl, optionally substituted carbazolyl, optionally substituted diphenylamine and optionally substituted diphenylaminophenyl; provided that: at least one of R1, R2, and R3 is selected from optionally substituted carbazolyl, optionally substituted diphenylamine and optionally substituted diphenylaminophenyl and at least one of R6, R7, and R8 is selected from optionally substituted carbazolyl, optionally substituted diphenylamine and optionally substituted diphenylaminophenyl; and R4 and R5 are independently selected from the group consisting of H, optionally substituted C1-12 alkyl, optionally substituted phenyl, optionally substituted diphenylamine and optionally substituted diphenylaminophenyl.
    Type: Application
    Filed: January 27, 2010
    Publication date: August 26, 2010
    Applicant: NITTO DENKO CORPORATION
    Inventors: David T. Sisk, Sheng Li, Amane Mochizuki
  • Publication number: 20100213832
    Abstract: Some embodiments provide a compound represented by Formula 1: wherein R1, R2, R3, R6, R7, and R8 are independently selected from the group consisting of H, optionally substituted C1-12 alkyl, optionally substituted phenyl, optionally substituted carbazolyl, optionally substituted diphenylamine and optionally substituted diphenylaminophenyl; provided that: at least one of R1, R2, and R3 is selected from optionally substituted carbazolyl, optionally substituted diphenylamine and optionally substituted diphenylaminophenyl and at least one of R6, R7, and R8 is selected from optionally substituted carbazolyl, optionally substituted diphenylamine and optionally substituted diphenylaminophenyl; and R4 and R5 are independently selected from the group consisting of H, optionally substituted C1-12 alkyl, optionally substituted phenyl, optionally substituted diphenylamine and optionally substituted diphenylaminophenyl.
    Type: Application
    Filed: January 27, 2010
    Publication date: August 26, 2010
    Applicant: NITTO DENKO CORPORATION
    Inventors: David T. Sisk, Sheng Li, Amane Mochizuki
  • Publication number: 20100213829
    Abstract: Some embodiments provide a compound represented by Formula 1: wherein R1, R2, R3, R6, R7, and R8 are independently selected from the group consisting of H, optionally substituted C1-12 alkyl, optionally substituted phenyl, optionally substituted carbazolyl, optionally substituted diphenylamine and optionally substituted diphenylaminophenyl; provided that: at least one of R1, R2, and R3 is selected from optionally substituted carbazolyl, optionally substituted diphenylamine and optionally substituted diphenylaminophenyl and at least one of R6, R7, and R8 is selected from optionally substituted carbazolyl, optionally substituted diphenylamine and optionally substituted diphenylaminophenyl; and R4 and R5 are independently selected from the group consisting of H, optionally substituted C1-12 alkyl, optionally substituted phenyl, optionally substituted diphenylamine and optionally substituted diphenylaminophenyl.
    Type: Application
    Filed: January 27, 2010
    Publication date: August 26, 2010
    Applicant: NITTO DENKO CORPORATION
    Inventors: David T. Sisk, Sheng Li, Amane Mochizuki
  • Publication number: 20100213831
    Abstract: Some embodiments provide a compound represented by Formula 1: wherein R1, R2, R3, R6, R7, and R8 are independently selected from the group consisting of H, optionally substituted C1-12 alkyl, optionally substituted phenyl, optionally substituted carbazolyl, optionally substituted diphenylamine and optionally substituted diphenylaminophenyl; provided that: at least one of R1, R2, and R3 is selected from optionally substituted carbazolyl, optionally substituted diphenylamine and optionally substituted diphenylaminophenyl and at least one of R6, R7, and R8 is selected from optionally substituted carbazolyl, optionally substituted diphenylamine and optionally substituted diphenylaminophenyl; and R4 and R5 are independently selected from the group consisting of H, optionally substituted C1-12 alkyl, optionally substituted phenyl, optionally substituted diphenylamine and optionally substituted diphenylaminophenyl.
    Type: Application
    Filed: January 27, 2010
    Publication date: August 26, 2010
    Applicant: NITTO DENKO CORPORATION
    Inventors: David T. Sisk, Sheng Li, Amane Mochizuki
  • Publication number: 20100213830
    Abstract: Some embodiments provide a compound represented by Formula 1: wherein R1, R2, R3, R6, R7, and R8 are independently selected from the group consisting of H, optionally substituted C1-12 alkyl, optionally substituted phenyl, optionally substituted carbazolyl, optionally substituted diphenylamine and optionally substituted diphenylaminophenyl; provided that: at least one of R1, R2, and R3 is selected from optionally substituted carbazolyl, optionally substituted diphenylamine and optionally substituted diphenylaminophenyl and at least one of R6, R7, and R8 is selected from optionally substituted carbazolyl, optionally substituted diphenylamine and optionally substituted diphenylaminophenyl; and R4 and R5 are independently selected from the group consisting of H, optionally substituted C1-12 alkyl, optionally substituted phenyl, optionally substituted diphenylamine and optionally substituted diphenylaminophenyl.
    Type: Application
    Filed: January 27, 2010
    Publication date: August 26, 2010
    Applicant: NITTO DENKO CORPORATION
    Inventors: David T. Sisk, Sheng Li, Amane Mochizuki
  • Publication number: 20100207512
    Abstract: One embodiment provides a method for fabricating a translucent phosphor ceramic compact comprising: heating a precursor powder to at least about 1000° C. under a reducing atmosphere to provide a pre-conditioned powder, forming an intermediate compact comprising the pre-conditioned powder and a flux material, and heating the intermediate compact under a vacuum to a temperature of at least about 1400° C. In another embodiment, the compact may be a cerium doped translucent phosphor ceramic compact comprising yttrium, aluminum, oxygen, and cerium sources. Another embodiment may be a light emitting device having the phosphor translucent ceramic provided as described herein.
    Type: Application
    Filed: February 19, 2009
    Publication date: August 19, 2010
    Inventors: Hiroaki Miyagawa, Toshitaka Nakamura, Hironaka Fujii, Amane Mochizuki
  • Publication number: 20100207065
    Abstract: Disclosed herein is a method of increasing the luminescence efficiency of a translucent phosphor ceramic. Other embodiments are methods of manufacturing a phosphor translucent ceramic having increased luminescence. Another embodiment is a light emitting device comprising a phosphor translucent ceramic made by one of these methods.
    Type: Application
    Filed: February 19, 2009
    Publication date: August 19, 2010
    Inventors: Hiroaki Miyagawa, Toshitaka Nakamura, Hironaka Fujii, Amane Mochizuki
  • Publication number: 20100209628
    Abstract: Photoinduced chemical vapor deposition was used to grow coatings on nanoparticles. Aerosolized nanoparticles were mixed with a vapor-phase coating reactant and introduced into a coating reactor, where the mixture was exposed to ultraviolet radiation. Tandem differential mobility analysis was used to determine coating thicknesses as a function of initial particle size.
    Type: Application
    Filed: April 17, 2008
    Publication date: August 19, 2010
    Applicant: Regents of the University of Minnesota
    Inventors: Steven L. Girshick, Bin Zhang, Toshitaka Nakamura, Amane Mochizuki, Jeffrey Roberts, Ying-Chin Liao, Yuanqing He, Adam Boies
  • Publication number: 20100200808
    Abstract: Described herein are batches of nanoscale phosphor particles having an average particle size of less than about 200 nm and an average internal quantum efficiency of at least 40%. The batches of nanoscale phosphor particles can be substantially free of impurities. Also described herein are methods of manufacturing the nanoscale phosphor particles by passing phosphor particles through a reactive field to thereby dissociate them into elements and then synthesizing nanoscale phosphor particles by nucleating the elements and quenching the resulting particles.
    Type: Application
    Filed: March 11, 2008
    Publication date: August 12, 2010
    Applicant: NITTO DENKO CORPORATION
    Inventors: Jami Hafiz, Toshitaka Nakamura, Steven L. Girshick, Joachim V.R. Heberlein, Amane Mochizuki, Rajesh Mukherjee
  • Publication number: 20100031734
    Abstract: A method for testing the quality of a solvent is disclosed. The method comprises obtaining a solvent sample, wherein the solvent sample contains less than 10 ppm of impurities and nebulizing the solvent sample thereby forming a multitude of droplets that comprises solvent and impurities. The method further comprises evaporating the solvent from at least a portion of the multitude of droplets to thereby form a multitude of aerosol particles, condensing a liquid onto at least a portion of the multitude of aerosol particles to a multitude of form liquid-coated aerosol particles, and counting the number of liquid-coated aerosol particles.
    Type: Application
    Filed: August 5, 2008
    Publication date: February 11, 2010
    Applicant: NITTO DENKO CORPORATION
    Inventors: BIN ZHANG, TOSHITAKA NAKAMURA, AMANE MOCHIZUKI
  • Publication number: 20100012478
    Abstract: A method of annealing inorganic particles using microwave is provided. The method comprises disposing a plurality of raw particles having poor room-temperature microwave coupling characteristics in a close proximity to a microwave-absorbing material, irradiating said microwave-absorbing material with microwave radiation to heat said microwave-absorbing material, and heating said plurality of raw particles for a period of time sufficient to obtain a plurality of annealed particles, wherein the plurality of annealed particles has a crystalline phase, and wherein said heating comprises transferring heat from said microwave-absorbing material to said plurality of raw particles.
    Type: Application
    Filed: July 17, 2008
    Publication date: January 21, 2010
    Applicant: NITTO DENKO CORPORATION
    Inventors: TOSHITAKA NAKAMURA, RAJESH MUKHERJEE, BIN ZHANG, AMANE MOCHIZUKI
  • Patent number: 7641821
    Abstract: The invention provides a process of manufacturing an optical waveguide for optically connecting a plurality of optical devices, comprising the steps of: disposing a resin composition between two or more optical devices, the resin composition comprising a resin and a 1,4-dihydropyridine derivative, forming an optical path through the resin composition between the optical devices by light having a wavelength capable of inducing a structural change in the 1,4-dihydropyridine derivative, and removing the 1,4-dihydropyridine derivative from the resulting resin composition. Also disclosed is a connection structure obtained by the process.
    Type: Grant
    Filed: January 21, 2004
    Date of Patent: January 5, 2010
    Assignee: Nitto Denko Corporation
    Inventors: Kunishige Oe, Kenichi Yamashita, Kazunori Mune, Amane Mochizuki, Ryuusuke Naitou
  • Publication number: 20090293675
    Abstract: Methods of generating nanoparticles are described that comprises feeding nebulized droplets into a radio frequency plasma torch to generate nanoparticles, wherein the majority of the nanoparticles generated have a diameter of less than about 50 nm. These methods are useful for synthesizing nanoparticles of metals, semiconductors, ceramics or any other material class where the precursors are either in liquid form or can be dissolved or suspended in a suitable liquid. Methods of feeding nebulized droplets and central gas into a radio frequency plasma torch and apparatus for generating nanoparticles are also described.
    Type: Application
    Filed: June 2, 2008
    Publication date: December 3, 2009
    Inventors: RAJESH MUKHERJEE, TOSHITAKA NAKAMURA, AMANE MOCHIZUKI, JAMI HAFIZ, SRIVATHSAN GANAPATHYSUBRAMANIAN, JOACHIM V. R. HEBERLEIN, STEVEN L. GIRSHICK
  • Publication number: 20090212697
    Abstract: A light emitting device comprising a light emitting component that emits light with a first peak wavelength, and at least one sintered ceramic plate over the light emitting component is described. The at least one sintered ceramic plate is capable of absorbing at least a portion of the light emitted from said light emitting component and emitting light of a second peak wavelength, and has a total light transmittance at the second peak wavelength of greater than about 40%. A method for improving the luminance intensity of a light emitting device comprising providing a light emitting component and positioning at least one translucent sintered ceramic plate described above over the light emitting component is also disclosed.
    Type: Application
    Filed: February 19, 2009
    Publication date: August 27, 2009
    Inventors: TOSHITAKA NAKAMURA, HIRONAKA FUJII, HIROAKI MIYAGAWA, RAJESH MUKHERJEE, BIN ZHANG, AMANE MOCHIZUKI
  • Publication number: 20090208398
    Abstract: A solvothermal process for making inorganic nanoparticles is described. Inorganic nanoparticles can be produced by forming a suspension or solution comprising at least one group II-IV and lanthanide metal inorganic salt in a first medium, disposing the suspension or solution in a sealed chamber having an interior pressure, elevating the interior pressure of the sealed chamber to an initial interior pressure prior to the heating, heating the suspension or solution to a peak temperature higher than the normal boiling point of the first medium, optionally adding a second medium to the suspension or solution after the heating.
    Type: Application
    Filed: February 15, 2008
    Publication date: August 20, 2009
    Inventors: SHENG LI, JESSE DAN FROEHLICH, TOSHITAKA NAKAMURA, AMANE MOCHIZUKI
  • Publication number: 20090179552
    Abstract: A light emitting composition includes a light-emitting lumophore-functionalized nanoparticle, such as an organic-inorganic light-emitting lumophore-functionalized nanoparticle. A light emitting device includes an anode, a cathode, and a layer containing such a light-emitting composition. In an embodiment, the light emitting device can emit white light.
    Type: Application
    Filed: November 6, 2008
    Publication date: July 16, 2009
    Inventors: JESSE FROEHLICH, HYUN SIK CHAE, AMANE MOCHIZUKI, SHENG LI, GHASSAN JABBOUR
  • Publication number: 20090066234
    Abstract: A light emitting composition includes a light-emitting iridium-functionalized nanoparticle, such as an organic-inorganic light-emitting iridium-functionalized nanoparticle. A light emitting device includes an anode, a cathode, and a layer containing such a light-emitting composition. In an embodiment, the light emitting device can emit white light.
    Type: Application
    Filed: July 2, 2008
    Publication date: March 12, 2009
    Inventors: HYUN SIK CHAE, YUTAKA OHMORI, JESSE FROEHLICH, SHENG LI, AMANE MOCHIZUKI, GHASSAN JABBOUR